Posted on

Table of Contents

Gaussian Integers

Let i=1i=\sqrt{-1} and Z[i]\Z[i] is a set of a+bia,bZ{a+bi|a,b\in \Z}. For addition: a+bi+c+di=(a+c)+(b+d)iZ[i]a + bi + c + di = (a+c) + (b+d)i \in \Z[i]. For multiplication: (a+bi)(b+ci)=(acbd)+(ad+bc)iZ[i](a+bi)(b+ci)=(ac-bd)+(ad+bc)i \in \Z[i]. So Z[i]\Z[i] is a ring on integral domain.

Proposition 1

Z[i]\Z[i] is a Euclidean Domain

Proof:

Revise the definition of Euclidean Domain: if RZ+\exist \R \to \Z^+

  1. If 0a,bR0\neq a,b \in \R, then λ[a]<λ[ab]\lambda[a] < \lambda[ab].
  2. if a,bRa,b\in \R, b0b\neq 0, there exist q,rRq,r\in\R such that a=qb+ra=qb+r wither r=0r=0 or λ[r]<λ[b]\lambda[r]<\lambda[b].

Here the λ\lambda is like a "norm" function.

So, first, define a "norm" function first: α=a+biZ\alpha = a+bi \in \Z, so λ(α)=α=a2+b2\lambda(\alpha) = |\alpha| = a^2+b^2

For Gaussian Integer: λ(αβ)=λ(α)λ(β)>λ(α)\lambda(\alpha\beta) = \lambda(\alpha)\lambda(\beta) > \lambda(\alpha).

Consider α=a+bi\alpha=a+bi and β=c+di\beta=c+di. αβ=(a+bi)(cdi)c2+d2=ac+bdc2+d2+bcadc2+d2i \frac{\alpha}{\beta} = \frac{(a+bi)(c-di)}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i Assume q1,q2Zq_1,q_2 \in \Z and 12r1,r212-\frac{1}{2} \leq r_1,r_2 \leq \frac{1}{2} such that: q1+r1=ac+bdc2+d2 q_1 + r_1 = \frac{ac+bd}{c^2+d^2}

q2+r2=bcadc2+d2 q_2 + r_2 = \frac{bc-ad}{c^2+d^2}

So we have : αβ1=(q1+q2i)+(r1+r2i) \alpha\beta^{-1} = (q_1 + q_2i) + (r_1 + r_2i)

α=β(q1+q2i)+β(r1+r2i) \alpha = \beta(q_1 + q_2i) + \beta(r_1 + r_2i)

Since α,β,(q1+q2i)Z[i]\alpha,\beta,(q_1 + q_2i) \in \Z[i], so β(r1+r2i)Z[i]\beta(r_1 + r_2i) \in \Z[i]

Now we only need to prove: λ(β(r1+r2i))=λ(β)(r12+r22)12λ(β)λ(β) \lambda(\beta(r_1 + r_2i)) = \lambda(\beta)(r_1^2+r_2^2) \leq \frac{1}{2} \lambda(\beta) \leq \lambda(\beta) So Z[i]\Z[i] is a Euclidean Domain.

Another "Integer"

Let ω=1+32\omega = \frac{-1+\sqrt{-3}}{2} and Z[ω]\Z[\omega] is a set of a+bωa,bZ{a+b\omega|a,b\in \Z}. For addition: a+bω+c+dω=(a+c)+(b+d)ωZ[ω]a + b\omega + c + d\omega = (a+c) + (b+d)\omega \in \Z[\omega]. For multiplication (a+bω)(c+dω)=(acbd)+(ad+bcbd)ωZ[ω](a+b\omega)(c+d\omega)=(ac-bd)+(ad+bc-bd)\omega \in \Z[\omega]. So Z[ω]\Z[\omega] is a ring on integral domain.

Proposition 2

Z[ω]\Z[\omega] is a Euclidean Domain

Proof:

First, obviously, ω\omega is one of the root of x2+x+1=0x^2+x+1=0. So we have ω2=1ω\omega^2=-1-\omega

Define our "norm" function: α=a+biZ\alpha = a+bi \in \Z, so λ(α)=ααˉ=a2+b2ab\lambda(\alpha) = \alpha\bar\alpha = a^2+b^2 - ab

We have λ(αβ)=λ(α)λ(β)>λ(α)=a2+b2ab\lambda(\alpha\beta) = \lambda(\alpha)\lambda(\beta) > \lambda(\alpha) = a^2+b^2-ab.

Still consider α=a+bi\alpha=a+bi and β=c+di\beta=c+di. αβ=αβˉλ(β)=(a+bω)(cdω)c2+d2cd=ac+bdc2+d2cd+bcadc2+d2cdω \frac{\alpha}{\beta} = \frac{\alpha\bar\beta}{\lambda({\beta})} = \frac{(a+b\omega)(c-d\omega)}{c^2+d^2 - cd} = \frac{ac+bd}{c^2+d^2 -cd} + \frac{bc-ad}{c^2+d^2-cd}\omega Same operation, we take q1,q2Zq_1,q_2 \in \Z and 12r1,r212-\frac{1}{2} \leq r_1,r_2 \leq \frac{1}{2} such that: q1+r1=ac+bdc2+d2cd q_1 + r_1 = \frac{ac+bd}{c^2+d^2-cd}

q2+r2=bcadc2+d2cd q_2 + r_2 = \frac{bc-ad}{c^2+d^2-cd}

We have: αβ1=(q1+q2ω)+(r1+r2ω)=r+sω \alpha\beta^{-1} = (q_1 + q_2\omega) + (r_1 + r_2\omega) = r+s\omega Think another way, since α,βˉZ[ω]\alpha,\bar\beta\in\Z[\omega] and λ[β]Z\lambda[\beta]\in\Z. We can be sure that αβ1=r+sω\alpha\beta^{-1} = r+s\omega where p,qp,q are rational numbers.

So things are clear: α=β(q1+q2ω)+β(r1+r2ω) \alpha = \beta(q_1 + q_2\omega) + \beta(r_1 + r_2\omega)

λ(β(r1+r2ω))=λ(β)(r12+r22r1r2)34λβλ(β) \lambda(\beta(r_1 + r_2\omega)) = \lambda(\beta)(r_1^2+r_2^2-r_1r_2) \leq \frac{3}{4}\lambda{\beta} \leq \lambda(\beta)