Let i=−1 and Z[i] is a set of a+bi∣a,b∈Z. For addition: a+bi+c+di=(a+c)+(b+d)i∈Z[i]. For multiplication: (a+bi)(b+ci)=(ac−bd)+(ad+bc)i∈Z[i]. So Z[i] is a ring on integral domain.
Proposition 1
Z[i] is a Euclidean Domain
Proof:
Revise the definition of Euclidean Domain: if ∃R→Z+
If 0=a,b∈R, then λ[a]<λ[ab].
if a,b∈R, b=0, there exist q,r∈R such that a=qb+r wither r=0 or λ[r]<λ[b].
Here the λ is like a "norm" function.
So, first, define a "norm" function first: α=a+bi∈Z, so λ(α)=∣α∣=a2+b2
For Gaussian Integer: λ(αβ)=λ(α)λ(β)>λ(α).
Consider α=a+bi and β=c+di. βα=c2+d2(a+bi)(c−di)=c2+d2ac+bd+c2+d2bc−adi Assume q1,q2∈Z and −21≤r1,r2≤21 such that: q1+r1=c2+d2ac+bd
q2+r2=c2+d2bc−ad
So we have : αβ−1=(q1+q2i)+(r1+r2i)
α=β(q1+q2i)+β(r1+r2i)
Since α,β,(q1+q2i)∈Z[i], so β(r1+r2i)∈Z[i]
Now we only need to prove: λ(β(r1+r2i))=λ(β)(r12+r22)≤21λ(β)≤λ(β) So Z[i] is a Euclidean Domain.
Another "Integer"
Let ω=2−1+−3 and Z[ω] is a set of a+bω∣a,b∈Z. For addition: a+bω+c+dω=(a+c)+(b+d)ω∈Z[ω]. For multiplication (a+bω)(c+dω)=(ac−bd)+(ad+bc−bd)ω∈Z[ω]. So Z[ω] is a ring on integral domain.
Proposition 2
Z[ω] is a Euclidean Domain
Proof:
First, obviously, ω is one of the root of x2+x+1=0. So we have ω2=−1−ω
Define our "norm" function: α=a+bi∈Z, so λ(α)=ααˉ=a2+b2−ab
We have λ(αβ)=λ(α)λ(β)>λ(α)=a2+b2−ab.
Still consider α=a+bi and β=c+di. βα=λ(β)αβˉ=c2+d2−cd(a+bω)(c−dω)=c2+d2−cdac+bd+c2+d2−cdbc−adω Same operation, we take q1,q2∈Z and −21≤r1,r2≤21 such that: q1+r1=c2+d2−cdac+bd
q2+r2=c2+d2−cdbc−ad
We have: αβ−1=(q1+q2ω)+(r1+r2ω)=r+sω Think another way, since α,βˉ∈Z[ω] and λ[β]∈Z. We can be sure that αβ−1=r+sω where p,q are rational numbers.