Q1 Let a , b ∈ Z + a,b\in\Z^+ a , b ∈ Z + . We can find q , r q,r q , r such that a = q b + r a=qb+r a = q b + r where 0 ≤ r < b 0\le r < b 0 ≤ r < b . Prove ( a , b ) = ( b , r ) (a,b)=(b,r) ( a , b ) = ( b , r ) .
Proof:
By definition: ( a , b ) = a x + b y = ( x q + y ) b + x r = ( b , r ) (a,b)=ax+by=(xq+y)b+xr=(b,r) ( a , b ) = a x + b y = ( x q + y ) b + x r = ( b , r ) where x , y , q ∈ Z + x,y,q \in \Z^+ x , y , q ∈ Z + . Therefore ( a , b ) = ( b , r ) (a,b)=(b,r) ( a , b ) = ( b , r )
Q2 If r ≠ 0 r\neq0 r = 0 , we can find b = q 1 r + r 1 b=q_1r+r_1 b = q 1 r + r 1 with 0 ≤ r 1 < r 0\leq r_1< r 0 ≤ r 1 < r . The process can be repeated, but only a finite number of steps are possible. Show ( r k ) = ( a , b ) (r_k) = (a,b) ( r k ) = ( a , b ) .
Proof:
At each step: r m − 1 = q m + 1 r m + r m + 1 r_{m-1} = q_{m+1} r_m+ r_{m+1} r m − 1 = q m + 1 r m + r m + 1 where 0 ≤ r m + 1 < r m 0\le r_{m+1} < r_m 0 ≤ r m + 1 < r m .
For each step, r m r_{m} r m becomes progressively smaller with r m + 1 ≤ r m − 1 r_{m+1} \leq r_m-1 r m + 1 ≤ r m − 1 indicating a finite number of steps before stopping at r m + 1 = 0 r_{m+1} = 0 r m + 1 = 0 .
Thus, by each step, we have:( a , b ) = ( b , r ) = ( r , r 1 ) = . . . = ( r k , r k + 1 ) (a,b)=(b,r)=(r,r_1)=...=(r_k,r_{k+1}) ( a , b ) = ( b , r ) = ( r , r 1 ) = ... = ( r k , r k + 1 )
Since r k = q k + 2 r k − 1 r_k = q_{k+2}r_{k-1} r k = q k + 2 r k − 1 , it follows ( r k , r k + 1 ) = ( r k ) (r_k,r_{k+1}) = (r_k) ( r k , r k + 1 ) = ( r k )
Q4 Let ( a , b ) = d (a,b)=d ( a , b ) = d . For a function a m + b n = d am+bn=d am + bn = d , how to find m,n.
From Q2 we know: r i + 1 = r i − 1 − r i q i r_{i+1} = r_{i-1} - r_iq_i r i + 1 = r i − 1 − r i q i . By substituting for r i r_i r i from previous step until r i + 1 = a m + b n r_{i+1} = am+bn r i + 1 = am + bn .
Q6 Let a , b , c ∈ Z a,b,c\in\Z a , b , c ∈ Z and a x + b y = c ax+by=c a x + b y = c has integers solutions iff ( a , b ) ∣ c (a,b)|c ( a , b ) ∣ c .
Proof:
If a x + b y = c ax+by=c a x + b y = c have solution, it implies c ∈ ( a , b ) c \in (a,b) c ∈ ( a , b ) , so obviously ( a , b ) ∣ c (a,b)|c ( a , b ) ∣ c .
If ( a , b ) ∣ c (a,b)|c ( a , b ) ∣ c , then c = c 0 ∗ d c = c_0 * d c = c 0 ∗ d where ( a , b ) = d , a = p d , b = q d (a,b)=d, a=pd,b=qd ( a , b ) = d , a = p d , b = q d . There must be a solution for d = x 0 a + y 0 b d = x_0a+y_0b d = x 0 a + y 0 b .
Q7 Let d = ( a , b ) d=(a,b) d = ( a , b ) and a = d a ′ , b = d b ′ a=da',b=db' a = d a ′ , b = d b ′ , show that ( a ′ , b ′ ) = 1 (a',b')=1 ( a ′ , b ′ ) = 1 .
Proof:
Assume ( a ′ , b ′ ) = p (a',b')=p ( a ′ , b ′ ) = p . Then a ′ = m p a'=mp a ′ = m p and b ′ = n p b'=np b ′ = n p .
Thus ( a , b ) = ( m p d , n p d ) = ( p d ) = d (a,b) = (mpd,npd) = (pd) = d ( a , b ) = ( m p d , n p d ) = ( p d ) = d , which means p = 1 p = 1 p = 1 .
Q8 If x 0 , y 0 x_0,y_0 x 0 , y 0 is a solution for a x + b y = c ax+by=c a x + b y = c . Show all solutions in form of x 0 , y 0 x_0,y_0 x 0 , y 0 .
Proof:
Substitute x , y x,y x , y into the equation: a ( x 0 + t ( b / d ) ) + b ( y 0 − t ( a / d ) ) = a x 0 + b y 0 + t ( a b / d − b a / d ) = a x 0 + b y 0 = c a(x_0+t(b/d)) + b(y_0-t(a/d)) = ax_0+by_0+t(ab/d-ba/d) = ax_0+by_0=c a ( x 0 + t ( b / d )) + b ( y 0 − t ( a / d )) = a x 0 + b y 0 + t ( ab / d − ba / d ) = a x 0 + b y 0 = c
Q9 Suppose u , v ∈ Z u,v \in \Z u , v ∈ Z and if ( u , v ) = 1 , u ∣ n , v ∣ n (u,v)=1, u|n,v|n ( u , v ) = 1 , u ∣ n , v ∣ n , then u v ∣ n uv|n uv ∣ n . If ( u , v ) ≠ 1 (u,v)\neq 1 ( u , v ) = 1 , that's not true.
Proof:
Since u ∣ n , v ∣ n u|n,v|n u ∣ n , v ∣ n , we can have n = p u n=pu n = p u , So v ∣ p u v|pu v ∣ p u . But ( u , v ) = 1 (u,v)=1 ( u , v ) = 1 , hence v ∣ p v|p v ∣ p . Therefore u v ∣ p u uv|pu uv ∣ p u , which means u v ∣ n uv|n uv ∣ n .
If ( u , v ) = g ≠ 1 (u,v) = g\neq1 ( u , v ) = g = 1 , assume u = a g , v = b g u=ag,v=bg u = a g , v = b g . Let n = a b g n=abg n = ab g , we have a g ∣ a b g , b g ∣ a b g ag|abg,bg|abg a g ∣ ab g , b g ∣ ab g which implies u ∣ n , v ∣ n u|n,v|n u ∣ n , v ∣ n . And u v = a b g 2 ∤ a b g uv=abg^2 \nmid abg uv = ab g 2 ∤ ab g .
Q10 Suppose ( u , v ) = 1 (u,v)=1 ( u , v ) = 1 , show ( u + v , u − v ) = 1 or 2 (u+v,u-v)= 1\ \text{or}\ 2 ( u + v , u − v ) = 1 or 2
Proof:
Assume some value d such that ( u + v , u − v ) = d (u+v,u-v)=d ( u + v , u − v ) = d . Then d ∣ ( u + v ) d|(u+v) d ∣ ( u + v ) and d ∣ ( u − v ) d|(u-v) d ∣ ( u − v )
Thus we have: d ∣ ( u + v ) + ( u − v ) ⟹ d ∣ 2 u d|(u+v)+(u-v) \implies d|2u d ∣ ( u + v ) + ( u − v ) ⟹ d ∣2 u
d ∣ ( u + v ) − ( u − v ) ⟹ d ∣ 2 u d|(u+v)-(u-v) \implies d|2u d ∣ ( u + v ) − ( u − v ) ⟹ d ∣2 u
Since ( u , v ) = 1 (u,v)=1 ( u , v ) = 1 , so d ∣ 2 d|2 d ∣2 . That means d = 1 or 2 d=1\ \text{or}\ 2 d = 1 or 2
Q11 Show that ( a , a + k ) ∣ k (a,a+k)|k ( a , a + k ) ∣ k
Proof:
Assume ( a , a + k ) = g (a,a+k)=g ( a , a + k ) = g . We have a = m g a=mg a = m g and a + k = n g a+k=ng a + k = n g where m , n ∈ Z m,n\in \Z m , n ∈ Z .
Subtracting the two equation: k = a + k − a = n g − m g = ( n − m ) g k= a+k-a = ng - mg = (n-m)g k = a + k − a = n g − m g = ( n − m ) g which means g ∣ k g|k g ∣ k
Q12 Show only six equilateral triangles, four squares and three hexagons are the only possibilities to form a evenly distributed common vertex.
Proof:
To form a common vertex, the angle of the polygon must sum to 36 0 ∘ 360^\circ 36 0 ∘ . So we have n n n -sided polygon with m m m of them, the internal angle is θ \theta θ n θ = ( n − 2 ) π n\theta=(n-2)\pi n θ = ( n − 2 ) π
m θ = 2 π m\theta=2\pi m θ = 2 π
Solving this gives: m = 2 n n − 2 m=\frac{2n}{n-2} m = n − 2 2 n .
Since m must be a positive integer, ( n − 2 ) ∣ 2 n (n-2)|2n ( n − 2 ) ∣2 n is required.
The only solution is when n = 3 , 4 , 6 n=3,4,6 n = 3 , 4 , 6 .
Q13 Let n 1 , n 2 . . . n s ∈ Z n_1,n_2...n_s\in\Z n 1 , n 2 ... n s ∈ Z , and ( n 1 , n 2 , . . . , n s ) = d (n_1,n_2,...,n_s)=d ( n 1 , n 2 , ... , n s ) = d . Prove that there exist integers m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m 1 , m 2 , ... , m n such that n 1 m 1 + n 2 m 2 + . . . + n s m s = d n_1m_1+n_2m_2+...+n_sm_s=d n 1 m 1 + n 2 m 2 + ... + n s m s = d .
Proof:
There exists a group of integers p 1 , p 2 , . . . , p s p_1,p_2,...,p_s p 1 , p 2 , ... , p s such that n 1 = p 1 d , n 2 = p 2 d , . . . , n s = p s d n_1=p_1d,n_2=p_2d,...,n_s=p_sd n 1 = p 1 d , n 2 = p 2 d , ... , n s = p s d .
Since ( n 1 , n 2 , . . . , n s ) = d (n_1,n_2,...,n_s)=d ( n 1 , n 2 , ... , n s ) = d , it follows that ( p 1 , p 2 , . . . , p s ) = 1 (p_1,p_2,...,p_s)=1 ( p 1 , p 2 , ... , p s ) = 1 , otherwise there would be a greater GCD for n.
Therefore, it is necessary that p 1 m 1 + p 2 m 2 + . . . + p s m s = 1 p_1m_1+p_2m_2+...+p_sm_s=1 p 1 m 1 + p 2 m 2 + ... + p s m s = 1 .
Hence p 1 m 1 d + p 2 m 2 d + . . . + p s m s d = d p_1m_1d+p_2m_2d+...+p_sm_sd=d p 1 m 1 d + p 2 m 2 d + ... + p s m s d = d
Q14 Discuss the solvability of a 1 x 1 + a 2 x 2 + . . . + a n x n = c a_1x_1+a_2x_2+...+a_nx_n=c a 1 x 1 + a 2 x 2 + ... + a n x n = c .
From Q14, it is solvable when ( a 1 , a 2 , . . . , a n ) ∣ c (a_1,a_2,...,a_n)|c ( a 1 , a 2 , ... , a n ) ∣ c
Q15 Show that iff ord p a \text{ord}_pa ord p a is even for all primes, we have a to be a square of another integer.
Proof:
Assume a = b 2 a=b^2 a = b 2 .
ord p a = ord p b b = ord p b + ord p b = 2 ord p b \text{ord}_pa=\text{ord}_pbb=\text{ord}_pb+\text{ord}_pb = 2\text{ord}_pb ord p a = ord p bb = ord p b + ord p b = 2 ord p b
Therefore ord p a \text{ord}_pa ord p a must be some value multiplied by 2, which is even.
Q16 If ( u , v ) = 1 (u,v)=1 ( u , v ) = 1 , and u v = a 2 uv=a^2 uv = a 2 , show u , v u,v u , v are squares.
Proof:
By Q15 we know: ord p u + ord p v = 2 ord p a \text{ord}_pu + \text{ord}_pv = 2\text{ord}_pa ord p u + ord p v = 2 ord p a
Since ( u , v ) = 1 (u,v)=1 ( u , v ) = 1 , it means ord p u , ord p v \text{ord}_pu,\text{ord}_pv ord p u , ord p v cannot be non-zero simultaneously. Otherwise, there would be a p p p as common divider.
Therefore ord p u , ord p v \text{ord}_pu,\text{ord}_pv ord p u , ord p v are both even to all p. Thus they are squares.
Q17 Prove that 2 \sqrt{2} 2 is irrational.
Proof:
Assume p 2 q 2 = 2 \frac{p^2}{q^2}=2 q 2 p 2 = 2 , we have p 2 = q 2 ∗ 2 p^2=q^2*2 p 2 = q 2 ∗ 2
By Q15 . We know if p 2 p^2 p 2 is a square number, that indicates ord 2 p 2 \text{ord}_2p^2 ord 2 p 2 is even. However, here it's 1. This is a contradiction.
Q18 Prove m n \sqrt[n]{m} n m is irrational if m m m is not a nth power of integer.
Proof:
Assuming p n p n = m \frac{p^n}{p^n}=m p n p n = m , we have p n = q n m p^n=q^nm p n = q n m .
That indicate ord n m \text{ord}_nm ord n m should satisfy ord n m ∣ n \text{ord}_nm|n ord n m ∣ n .
Q19 Prove exist of Least Common Multiple (LCM) to be a smallest m that a ∣ m , b ∣ m a|m,b|m a ∣ m , b ∣ m and for any other common multiple p, m ∣ p m|p m ∣ p .
Proof:
Assume ( a , b ) = p (a,b)=p ( a , b ) = p and a = s p , b = t p a=sp,b=tp a = s p , b = tp .
We could have a LCM that [ a , b ] ( a , b ) = a b [a,b](a,b)=ab [ a , b ] ( a , b ) = ab [ a , b ] = a b p = s t p 2 p = s t p [a,b]=\frac{ab}{p}=\frac{stp^2}{p} = stp [ a , b ] = p ab = p s t p 2 = s tp
Q20 Prove ord p [ a , b ] = max ( ord p , ord p b ) \text{ord}_p[a,b]=\max(\text{ord}_p,\text{ord}_pb) ord p [ a , b ] = max ( ord p , ord p b ) . Proof:
By definition, there are p m ∣ a , p n ∣ b p^m|a,p^n|b p m ∣ a , p n ∣ b and p m + 1 ∤ a , p n + 1 ∤ b p^{m+1}\nmid a,p^{n+1}\nmid b p m + 1 ∤ a , p n + 1 ∤ b .
It is known that, p max ( m , n ) ∣ [ a , b ] p^{\max(m,n)}|[a,b] p m a x ( m , n ) ∣ [ a , b ] .
If there exists s > max ( m , n ) s>\max(m,n) s > max ( m , n ) such that p s ∣ [ a , b ] p^s|[a,b] p s ∣ [ a , b ] . It implies p s ∣ a or p s ∣ b p^s|a \ \text{or} \ p^s|b p s ∣ a or p s ∣ b which is contradicts the assumption that m , n m,n m , n are maximum value.
Therefore ord p [ a , b ] = max ( ord p , ord p b ) \text{ord}_p[a,b]=\max(\text{ord}_p,\text{ord}_pb) ord p [ a , b ] = max ( ord p , ord p b ) .
Prove ( a , b ) [ a , b ] = a b (a,b)[a,b]=ab ( a , b ) [ a , b ] = ab Proof:
From Q19 , we know s t p stp s tp is one of the CM , we only need to prove that it is the least.
Assume m m m is a common multiple of a , b a,b a , b . m = k a = k s p m=ka=ksp m = ka = k s p .
Since b ∣ m b|m b ∣ m so t p ∣ k s p tp|ksp tp ∣ k s p , and given [ s , t ] = 1 [s,t]=1 [ s , t ] = 1 , it follows that t ∣ k t|k t ∣ k . Thus, is s t p ∣ m stp|m s tp ∣ m , making our s t p stp s tp the Least .
Prove ( a + b , [ a , b ] ) = ( a , b ) (a+b,[a,b])=(a,b) ( a + b , [ a , b ]) = ( a , b ) Proof:
( a + b , [ a , b ] ) = a m + b m + [ a , b ] n (a+b,[a,b])=am+bm+[a,b]n ( a + b , [ a , b ]) = am + bm + [ a , b ] n where m , n ∈ Z m,n\in\Z m , n ∈ Z .
Given, [ a , b ] = s b = t a [a,b]=sb=ta [ a , b ] = s b = t a where s , t ∈ Z s,t\in\Z s , t ∈ Z .
So ( a + b , [ a , b ] ) = a m + b m + [ a , b ] n = ( m + n t ) a + m b = m a + ( m + s n ) b = ( a , b ) (a+b,[a,b])=am+bm+[a,b]n=(m+nt)a+mb = ma+(m+sn)b=(a,b) ( a + b , [ a , b ]) = am + bm + [ a , b ] n = ( m + n t ) a + mb = ma + ( m + s n ) b = ( a , b )
Q21 Prove if ord p a ≠ ord p b \text{ord}_pa\neq\text{ord}_pb ord p a = ord p b , ord p ( a + b ) ≥ min ( ord p a , ord p b ) \text{ord}_p(a+b)\geq \min(\text{ord}_pa,\text{ord}_pb) ord p ( a + b ) ≥ min ( ord p a , ord p b )
Proof:
Let p α ∣ ( a + b ) , p m ∣ a , p n ∣ b p^\alpha|(a+b),p^m|a,p^n|b p α ∣ ( a + b ) , p m ∣ a , p n ∣ b with the assumption that m > n m>n m > n .
We have k p α = a + b , s p m = a , t p n = b kp^\alpha=a+b,sp^m=a,tp^n=b k p α = a + b , s p m = a , t p n = b , where ord p ( a + b ) = α , ord p a = m , ord p b = n , \text{ord}_p(a+b)=\alpha,\text{ord}_pa=m,\text{ord}_pb=n, ord p ( a + b ) = α , ord p a = m , ord p b = n , that is k p α = s p m + t p n = p n ( s p m − n + t ) kp^\alpha=sp^m+tp^n=p^n(sp^{m-n}+t) k p α = s p m + t p n = p n ( s p m − n + t ) Assume α < m i n ( m , n ) \alpha < min(m,n) α < min ( m , n ) , which implies a < n a < n a < n .
It follows that: k = p n − α ( s p m − n + t ) ⟹ p ∣ k k=p^{n-\alpha}(sp^{m-n}+t) \implies p|k k = p n − α ( s p m − n + t ) ⟹ p ∣ k which is a contradiction that p α ∣ k p α p^\alpha|kp^\alpha p α ∣ k p α and p α + 1 ∤ k p α p^{\alpha+1}\nmid kp^\alpha p α + 1 ∤ k p α .
Thus ord p ( a + b ) ≥ min ( ord p a , ord p b ) \text{ord}_p(a+b)\geq \min(\text{ord}_pa,\text{ord}_pb) ord p ( a + b ) ≥ min ( ord p a , ord p b ) .
Q23 If a 2 + b 2 = c 2 a^2+b^2=c^2 a 2 + b 2 = c 2 , show that there exist u , v u,v u , v that c − b = 2 u 2 , c + b = 2 v 2 c-b=2u^2,c+b=2v^2 c − b = 2 u 2 , c + b = 2 v 2 and ( u , v ) = 1 (u,v)=1 ( u , v ) = 1 .
Proof:
Starting with a 2 = c 2 − b 2 = ( c + b ) ( c − b ) a^2=c^2-b^2 = (c+b)(c-b) a 2 = c 2 − b 2 = ( c + b ) ( c − b ) .
Assume both c , d c,d c , d are either odd or even, c + d = 2 x c+d=2x c + d = 2 x and c − b = 2 y c-b=2y c − b = 2 y are both even.
It gives that a 2 = 4 x y a^2=4xy a 2 = 4 x y . Consequently 4 ∣ a 2 4|a^2 4∣ a 2 and 2 ∣ a 2|a 2∣ a .
Thus 4 ( a / 2 ) 2 = 4 x y 4(a/2)^2=4xy 4 ( a /2 ) 2 = 4 x y implies a 2 / 4 = x y a^2/4=xy a 2 /4 = x y .
Therefore a / 2 = x y a/2=\sqrt{x}\sqrt{y} a /2 = x y . Since a is even, x , y ∈ Z \sqrt{x},\sqrt{y}\in Z x , y ∈ Z .
Q24 Prove that x n − y n = ( x − y ) ( x n − 1 + x n − 2 y + . . . + y n − 1 ) x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+...+y^{n-1}) x n − y n = ( x − y ) ( x n − 1 + x n − 2 y + ... + y n − 1 ) Proof:
Base case for n = 1 n=1 n = 1 : x − y = x − y x-y=x-y x − y = x − y .
Assume for n = k n=k n = k and x k − y k = ( x − y ) ( x k − 1 + x k − 2 y + . . . + y k − 1 ) x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+...+y^{k-1}) x k − y k = ( x − y ) ( x k − 1 + x k − 2 y + ... + y k − 1 )
For n = k + 1 n=k+1 n = k + 1 : x k + 1 − y k + 1 = x x k − y y k = x x k − y y k + x y k − x y k = x ( x k − y k ) + y k ( x − y ) x^{k+1}-y^{k+1}=xx^k-yy^k=xx^k-yy^k+xy^k-xy^k=x(x^k-y^k)+y^k(x-y) x k + 1 − y k + 1 = x x k − y y k = x x k − y y k + x y k − x y k = x ( x k − y k ) + y k ( x − y )
x k + 1 − y k + 1 = x ( x − y ) ( x k − 1 + x k − 2 y + . . . + y k − 1 ) + y k ( x − y ) x^{k+1}-y^{k+1}=x(x-y)(x^{k-1}+x^{k-2}y+...+y^{k-1})+y^k(x-y) x k + 1 − y k + 1 = x ( x − y ) ( x k − 1 + x k − 2 y + ... + y k − 1 ) + y k ( x − y )
x k + 1 − y k + 1 = ( x − y ) ( x k + x k − 1 y + . . . + x y k − 1 + y k ) x^{k+1}-y^{k+1}=(x-y)(x^k+x^{k-1}y+...+xy^{k-1}+y^k) x k + 1 − y k + 1 = ( x − y ) ( x k + x k − 1 y + ... + x y k − 1 + y k )
By Mathematical Induction , the statement is proved.
Prove for odd n, x n + y n = ( x + y ) ( x n − 1 − x n − 2 y + x n − 3 y 2 − . . . + y n − 1 ) x^n+y^n=(x+y)(x^{n-1}-x^{n-2}y+x^{n-3}y^2-...+y^{n-1}) x n + y n = ( x + y ) ( x n − 1 − x n − 2 y + x n − 3 y 2 − ... + y n − 1 ) For n = 1 n=1 n = 1 , it is trivially holds as x + y = x + y x+y=x+y x + y = x + y .
Assume n = k n=k n = k and k is odd, the statement holds x k + y k = ( x + y ) ( x k − 1 − x k − 2 y + x k − 3 y 2 − . . . + y k − 1 ) x^k+y^k=(x+y)(x^{k-1}-x^{k-2}y+x^{k-3}y^2-...+y^{k-1}) x k + y k = ( x + y ) ( x k − 1 − x k − 2 y + x k − 3 y 2 − ... + y k − 1 )
For n = k + 2 n=k+2 n = k + 2 , we have x k + 2 + y k + 2 = x 2 x k + y 2 y k = x 2 x k + y 2 y k − x 2 y k + x 2 y k = x 2 ( x k + y k ) + y k ( y 2 − x 2 ) x^{k+2}+y^{k+2}=x^2x^k+y^2y^k=x^2x^k+y^2y^k-x^2y^k+x^2y^k=x^2(x^k+y^k)+y ^k(y^2-x^2) x k + 2 + y k + 2 = x 2 x k + y 2 y k = x 2 x k + y 2 y k − x 2 y k + x 2 y k = x 2 ( x k + y k ) + y k ( y 2 − x 2 )
x k + 2 + y k + 2 = x 2 ( x + y ) ( x k − 1 − x k − 2 y + x k − 3 y 2 − . . . + y k − 1 ) + y k ( y − x ) ( x + y ) x^{k+2}+y^{k+2}=x^2(x+y)(x^{k-1}-x^{k-2}y+x^{k-3}y^2-...+y^{k-1})+y^k(y-x)(x+y) x k + 2 + y k + 2 = x 2 ( x + y ) ( x k − 1 − x k − 2 y + x k − 3 y 2 − ... + y k − 1 ) + y k ( y − x ) ( x + y )
x k + 2 + y k + 2 = ( x + y ) ( x k + 1 − x k y + x k − 1 y 2 − . . . + x 2 y k − 1 ) + ( x + y ) ( − x y k + y k + 1 ) x^{k+2}+y^{k+2}=(x+y)(x^{k+1}-x^ky+x^{k-1}y^2-...+x^2y^{k-1})+(x+y)(-xy^k+y^{k+1}) x k + 2 + y k + 2 = ( x + y ) ( x k + 1 − x k y + x k − 1 y 2 − ... + x 2 y k − 1 ) + ( x + y ) ( − x y k + y k + 1 )
x k + 2 + y k + 2 = ( x + y ) ( x k + 1 − x k y + x k − 1 y 2 − . . . + x 2 y k − 1 − x y k + y k + 1 ) x^{k+2}+y^{k+2}=(x+y)(x^{k+1}-x^ky+x^{k-1}y^2-...+x^2y^{k-1}-xy^k+y^{k+1}) x k + 2 + y k + 2 = ( x + y ) ( x k + 1 − x k y + x k − 1 y 2 − ... + x 2 y k − 1 − x y k + y k + 1 )
By Mathematical Induction , the statement is proved.
Q25 If a n − 1 a^n-1 a n − 1 is prime, show that a = 2 a=2 a = 2 and n n n is prime.
Proof:
By Q24 , we have a n − 1 = ( a − 1 ) ( a n − 1 + a n − 2 + . . . + a + 1 ) a^n-1=(a-1)(a^{n-1}+a^{n-2}+...+a+1) a n − 1 = ( a − 1 ) ( a n − 1 + a n − 2 + ... + a + 1 ) .
Since the second part is always bigger than 1. So to make it prime, ( a − 1 ) = 1 (a-1)=1 ( a − 1 ) = 1 that is a = 2 a=2 a = 2 .
Assume n is not prime, such that n = p q n=pq n = pq , and p , q > 1 p,q>1 p , q > 1 . We have: 2 p q − 1 = ( 2 p ) q − 1 = ( 2 p − 1 ) ( ( 2 p ) q − 1 + ( 2 p ) q − 2 + . . . + 2 p + 1 ) 2^{pq}-1=(2^p)^q-1=(2^p-1)((2^p)^{q-1}+(2^p)^{q-2}+...+2^p+1) 2 pq − 1 = ( 2 p ) q − 1 = ( 2 p − 1 ) (( 2 p ) q − 1 + ( 2 p ) q − 2 + ... + 2 p + 1 ) Since 2 p − 1 > 1 2^p-1 > 1 2 p − 1 > 1 , 2 p q − 1 2^{pq}-1 2 pq − 1 is not prime. Thus n must be prime.
Q26 If a n + 1 a^n+1 a n + 1 is prime, show that a is even and n is a power of 2.
Proof:
First, if a is odd, a n + 1 a^n+1 a n + 1 is even which cannot be prime except 2.
Assume n is not power of 2. We shall consider n have at least one odd factor p > 1 p>1 p > 1 .
We can write n = p q n=pq n = pq where q is odd. ( a q ) p + 1 = ( a q + 1 ) ( a q − 1 − a q − 2 + a q − 3 − . . . + 1 ) (a^q)^p+1=(a^q+1)(a^{q-1}-a^{q-2}+a^{q-3}-...+1) ( a q ) p + 1 = ( a q + 1 ) ( a q − 1 − a q − 2 + a q − 3 − ... + 1 ) Since a q + 1 > 1 a^q+1>1 a q + 1 > 1 this implies a n + 1 a^n+1 a n + 1 is not prime.
Therefore n must be a power of 2.
Q27 Prove that for all odd n, there is 8 ∣ ( n 2 − 1 ) 8|(n^2-1) 8∣ ( n 2 − 1 ) .
Proof:
Given n is odd, we can express ( n 2 − 1 ) = ( n + 1 ) ( n − 1 ) (n^2-1)=(n+1)(n-1) ( n 2 − 1 ) = ( n + 1 ) ( n − 1 ) . Rewrite it as n 2 − 1 = 2 a ∗ 2 b n^2-1=2a*2b n 2 − 1 = 2 a ∗ 2 b , since ( n + 1 ) , ( n − 1 ) (n+1),(n-1) ( n + 1 ) , ( n − 1 ) are both even.
Also, we know that 2 a − 2 b = 2 ( a − b ) = 2 2a-2b=2(a-b)=2 2 a − 2 b = 2 ( a − b ) = 2 that is a − b = 1 a-b=1 a − b = 1
So one of a , b a,b a , b must be odd and the other one is even.
Hence, we can rewrite again n 2 − 1 = 2 ∗ 2 p ∗ 2 b = 8 ∗ p b n^2-1=2*2p*2b=8*pb n 2 − 1 = 2 ∗ 2 p ∗ 2 b = 8 ∗ p b . So 8 ∣ ( n 2 − 1 ) 8|(n^2-1) 8∣ ( n 2 − 1 )
Prove that if 3 ∤ n 3\nmid n 3 ∤ n , 6 ∣ ( n 2 − 1 ) 6|(n^2-1) 6∣ ( n 2 − 1 ) .
Proof:
Same progress: n 2 − 1 = ( n + 1 ) ( n − 1 ) n^2-1=(n+1)(n-1) n 2 − 1 = ( n + 1 ) ( n − 1 ) Since 3 ∤ n 3\nmid n 3 ∤ n , ( n + 1 ) , ( n − 1 ) (n+1),(n-1) ( n + 1 ) , ( n − 1 ) must have one of them be a multiple of 3, and the other is multiple of 2.
So n 2 − 1 = 3 x ∗ 2 y = 6 x y n^2-1=3x*2y=6xy n 2 − 1 = 3 x ∗ 2 y = 6 x y , that is 6 ∣ ( n 2 − 1 ) 6|(n^2-1) 6∣ ( n 2 − 1 )
Q28 Show that for all n, 30 ∣ n 5 − n 30|n^5-n 30∣ n 5 − n and 42 ∣ n 7 − n 42|n^7-n 42∣ n 7 − n .
Proof:
This is Fermat's little theorem :
5 ∣ n 5 − n 5|n^5-n 5∣ n 5 − n , also n 5 − n = n ( n + 1 ) ( n − 1 ) ( n 2 + 1 ) n^5-n=n(n+1)(n-1)(n^2+1) n 5 − n = n ( n + 1 ) ( n − 1 ) ( n 2 + 1 ) that 2 ∣ n 5 − n , 3 ∣ n 5 − n 2|n^5-n, 3|n^5-n 2∣ n 5 − n , 3∣ n 5 − n . So 30 ∣ n 5 − n 30|n^5-n 30∣ n 5 − n
7 ∣ n 7 − n 7|n^7-n 7∣ n 7 − n , also n 7 − n = n ( n + 1 ) ( n − 1 ) ( n 2 + n + 1 ) ( n 2 − n + 1 ) n^7-n=n(n+1)(n-1)(n^2+n+1)(n^2-n+1) n 7 − n = n ( n + 1 ) ( n − 1 ) ( n 2 + n + 1 ) ( n 2 − n + 1 ) that 2 ∣ n 7 − n , 3 ∣ n 7 − n 2|n^7-n, 3|n^7-n 2∣ n 7 − n , 3∣ n 7 − n . So 42 ∣ n 7 − n 42|n^7-n 42∣ n 7 − n
Q29 If (a,b)=(c,d)=1, and a b + c d \frac{a}{b}+\frac{c}{d} b a + d c is integer. Prove b = d b=d b = d
Proof:
Given a b + c d = a d + c b b d = p \frac{a}{b}+\frac{c}{d}=\frac{ad+cb}{bd}=p b a + d c = b d a d + c b = p where p is integer.
It implies a d = p b d − c b = b ( p d − c ) ad=pbd-cb=b(pd-c) a d = p b d − c b = b ( p d − c ) . Since ( a , b ) = 1 (a,b)=1 ( a , b ) = 1 it follows that a does not contain any factor of b. That is d must be some multiple of b.
Same b c − p b d − a d = d ( p b − a ) bc-pbd-ad=d(pb-a) b c − p b d − a d = d ( p b − a ) , d must be some multiple of b.
So b = d b=d b = d .
Q30 Prove 1 2 + 1 3 + 1 4 + . . . + 1 n \frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n} 2 1 + 3 1 + 4 1 + ... + n 1 is not integer
Proof:
Consider a largest power of 2 number 2 s 2^s 2 s such that 2 s < n 2^s<n 2 s < n .
When expressing the sum as ∑ k = 2 n n ! k n ! \frac{\sum_{k=2}^n\frac{n!}{k}}{n!} n ! ∑ k = 2 n k n ! Consider the biggest power of 2 number 2 t 2^t 2 t that 2 t < n ! 2^t<n! 2 t < n !
Think about the numerator , the highest power of 2 that divides n ! / k n!/k n ! / k is at least t − s t-s t − s .
So that means, the numerator will cancel out all even part so that must be an odd number.
Our sum will be like odd even \frac{\text{odd}}{\text{even}} even odd making the sum a non-integer.
Q31 Prove that ( 1 + i ) 2 ∣ 2 (1+i)^2|2 ( 1 + i ) 2 ∣2 in Z [ i ] \Z[i] Z [ i ]
Proof:
( 1 + i ) 2 ∗ ( − i ) = 2 (1+i)^2*(-i)=2 ( 1 + i ) 2 ∗ ( − i ) = 2
Q32 For α = a + b i \alpha=a+bi α = a + bi , λ ( α ) = a 2 + b 2 \lambda(\alpha)=a^2+b^2 λ ( α ) = a 2 + b 2 . Show that ( a 2 + b 2 ) ( c 2 + d 2 ) = ( a c − b d ) 2 + ( a d + b c ) 2 (a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2 ( a 2 + b 2 ) ( c 2 + d 2 ) = ( a c − b d ) 2 + ( a d + b c ) 2
Proof:
By λ ( α β ) = λ ( α ) λ ( β ) \lambda(\alpha\beta)=\lambda(\alpha)\lambda(\beta) λ ( α β ) = λ ( α ) λ ( β ) λ ( α β ) = ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i \lambda(\alpha\beta)=(a+bi)(c+di)=(ac-bd)+(ad+bc)i λ ( α β ) = ( a + bi ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i
Q33 Show that α ∈ Z [ i ] \alpha\in\Z[i] α ∈ Z [ i ] is a unit iff λ ( α ) = 1 \lambda(\alpha)=1 λ ( α ) = 1 .
Proof:
α \alpha α must divides 1 so it is called unit. That is α β = 1 \alpha\beta=1 α β = 1 .
If λ ( α ) > 1 \lambda(\alpha)>1 λ ( α ) > 1 ,λ ( α β ) = λ ( α ) λ ( β ) = 1 \lambda(\alpha\beta)=\lambda(\alpha)\lambda(\beta)=1 λ ( α β ) = λ ( α ) λ ( β ) = 1
λ ( β ) < 1 \lambda(\beta)<1 λ ( β ) < 1 . Which is c 2 + d 2 < 1 c^2+d^2<1 c 2 + d 2 < 1 , c o r d c\ or\ d c or d not integer.
So that for a 2 + b 2 = 1 a^2+b^2=1 a 2 + b 2 = 1 , all possible combination is a = ± 1 , b = 0 a=\pm1,b=0 a = ± 1 , b = 0 ; a = 0 , b = ± 1 a=0,b=\pm1 a = 0 , b = ± 1
Q34 Show that ( 1 − ω ) 2 ∣ 3 (1-\omega)^2|3 ( 1 − ω ) 2 ∣3 .
Proof: ( 1 − ω ) 2 ( 1 + ω ) = ( 1 − ω ) ( 1 − ω 2 ) = ( 1 − ω ) ( 2 + ω ) = 2 − ω − ω 2 = 3 (1-\omega)^2(1+\omega)=(1-\omega)(1-\omega^2)=(1-\omega)(2+\omega)=2-\omega-\omega^2=3 ( 1 − ω ) 2 ( 1 + ω ) = ( 1 − ω ) ( 1 − ω 2 ) = ( 1 − ω ) ( 2 + ω ) = 2 − ω − ω 2 = 3
Q35 Show Q33 works on Z [ ω ] \Z[\omega] Z [ ω ]
Proof:
Same λ ( α β ) = λ ( α ) λ ( β ) = 1 \lambda(\alpha\beta)=\lambda(\alpha)\lambda(\beta)=1 λ ( α β ) = λ ( α ) λ ( β ) = 1
λ ( β ) < 1 \lambda(\beta)<1 λ ( β ) < 1 leads to c 2 − c d + b 2 < 1 c^2-cd+b^2<1 c 2 − c d + b 2 < 1
That is ( c − d ) 2 + c d < 1 (c-d)^2+cd < 1 ( c − d ) 2 + c d < 1 . The minimum of ( c − d ) 2 = 0 (c-d)^2=0 ( c − d ) 2 = 0 , so c , d ∈ Z c,d\in\Z c , d ∈ Z c d > 1 cd>1 c d > 1 . Contradiction.
When ( c − d ) 2 + c d = 1 (c-d)^2+cd=1 ( c − d ) 2 + c d = 1 , the only possible combination of c,d is c = ± 1 , d = 0 ; c = 0 , d = ± 1 ; c = 1 , d = − 1 ; c = − 1 , d = 1 c=\pm1,d=0;c=0,d=\pm1;c=1,d=-1;c=-1,d=1 c = ± 1 , d = 0 ; c = 0 , d = ± 1 ; c = 1 , d = − 1 ; c = − 1 , d = 1
Q36 Show Z [ − 2 ] \Z[\sqrt{-2}] Z [ − 2 ] that in form of a + b − 2 a+b\sqrt{-2} a + b − 2 is a ring and is a Euclidean domain.
Proof:
Consider α = a + b − 2 \alpha=a+b\sqrt{-2} α = a + b − 2 and β = c + d − 2 \beta=c+d\sqrt{-2} β = c + d − 2 . α β = α β ˉ λ ( β ) = ( a + b − 2 ) ( c − d − 2 ) c + 2 d 2 = a c + 2 b d c + 2 d 2 + b d − a d c + 2 d 2 − 2 \frac{\alpha}{\beta}=\frac{\alpha\bar\beta}{\lambda(\beta)}=\frac{(a+b\sqrt{-2})(c-d\sqrt{-2})}{c+2d^2}=\frac{ac+2bd}{c+2d^2}+\frac{bd-ad}{c+2d^2}\sqrt{-2} β α = λ ( β ) α β ˉ = c + 2 d 2 ( a + b − 2 ) ( c − d − 2 ) = c + 2 d 2 a c + 2 b d + c + 2 d 2 b d − a d − 2 That is α β − 1 = ( q 1 + q 2 − 2 ) + ( r 1 + r 2 − 2 ) = r + s − 2 \alpha\beta^-1=(q_1+q_2\sqrt{-2})+(r_1+r_2\sqrt{-2})=r+s\sqrt{-2} α β − 1 = ( q 1 + q 2 − 2 ) + ( r 1 + r 2 − 2 ) = r + s − 2
α = β ( q 1 + q 2 − 2 ) + β ( r 1 + r 2 − 2 ) \alpha=\beta(q_1+q_2\sqrt{-2})+\beta(r_1+r_2\sqrt{-2}) α = β ( q 1 + q 2 − 2 ) + β ( r 1 + r 2 − 2 )
λ ( β ( r 1 + r 2 − 2 ) ) = λ ( β ) ( r 1 2 + 2 r 2 2 ) ≤ 3 4 λ ( β ) ≤ λ ( β ) \lambda(\beta(r_1+r_2\sqrt{-2}))=\lambda(\beta)(r_1^2+2r_2^2)\leq\frac{3}{4}\lambda(\beta)\leq\lambda(\beta) λ ( β ( r 1 + r 2 − 2 )) = λ ( β ) ( r 1 2 + 2 r 2 2 ) ≤ 4 3 λ ( β ) ≤ λ ( β )
Q37 Show the only unit in Z [ − 2 ] \Z[\sqrt{-2}] Z [ − 2 ] is 1and -1:
Proof:
a 2 + 2 b 2 = 1 a^2+2b^2=1 a 2 + 2 b 2 = 1 the only possibility is a = ± 1 , b = 0 a=\pm1,b=0 a = ± 1 , b = 0
Q38 Suppose that π ∈ Z [ i ] \pi \in \Z[i] π ∈ Z [ i ] and λ ( π ) \lambda(\pi) λ ( π ) is prime in Z \Z Z . Show that π \pi π is also prime in Z [ i ] \Z[i] Z [ i ] . This also holds in Z [ ω ] \Z[\omega] Z [ ω ] and Z − 2 \Z\sqrt{-2} Z − 2
Proof:
Assuming for contradiction that π \pi π is not prime in Z [ i ] \Z[i] Z [ i ] . Meaning there exsit α . β \alpha.\beta α . β such that π = α β \pi=\alpha\beta π = α β , and neither α \alpha α nor β \beta β being units or associates with π \pi π .
Then by the norm function, λ ( π ) = λ ( p α ) = λ ( p ) λ ( α ) \lambda(\pi)=\lambda(p\alpha)=\lambda(p)\lambda(\alpha) λ ( π ) = λ ( p α ) = λ ( p ) λ ( α ) . That indicate that λ ( π ) \lambda(\pi) λ ( π ) is not prime because neither α \alpha α nor β \beta β being units.
The reason extends analogously to Z [ ω ] \Z[\omega] Z [ ω ] or Z [ − 2 ] \Z[\sqrt{-2}] Z [ − 2 ] .
Q39 Prove that in any integer domain, the prime is irreducible.
Proof:
Assume a prime p ∈ D p \in D p ∈ D is not irreducible. That means p = a b p=ab p = ab , a , b ∈ D a,b\in D a , b ∈ D and a , b a,b a , b are not unit.
Since p is prime, p should divide a or b.
That is a = p ∗ c a=p*c a = p ∗ c
So we have p = a b = p ( b c ) p=ab=p(bc) p = ab = p ( b c ) . Which shows that b c bc b c is unit. That leads to b b b is unit which is a contradiction.