Posted on

Table of Contents

Growth of pi(x)

Proposition 1

Prove π(x)log(log(x))\pi(x)\geq \log(\log(x)) for x>2x>2, where π(x)\pi(x) is the number of positive primes less than x.

Proof:

It is obvious that pn+1p1p2...pn+1p_{n+1}\leq p_1p_2...p_n+1. Consider pi<22ip_i<2^{2^i}, so pn+122n+1222n+1p_{n+1}\leq 2^{2^{n+1}-2} \leq 2^{2^{n+1}}.

So π(x)π(een1)π(e2n)π(22n)nlog(log(x))\pi(x)\geq \pi(e^{e^{n-1}}) \geq \pi(e^{2^n}) \geq \pi(2^{2^n}) \geq n \geq \log(\log(x))

Proposition 2

Prove π(x)logx/2log2\pi(x)\geq \log{x/2}\log{2}

Proof:

For a set of primes SS, define fS(x)f_S(x) as the number of integers n that 1nx1 \leq n\leq x and γ(n)S\gamma(n)\subset S, where γ(n)\gamma(n) is the prime set that dividing nn.

Consider n=s2tn=s^2t, where tt is square free.

The number of choice of t shall be t=p1{0,1}p2{0,1}...pl{0,1}t=p_1^{\{0,1\}}p_2^{\{0,1\}}...p_l^{\{0,1\}} that is 2π(x)2^{\pi(x)}.

For nxn \leq x, we have sxs\leq\sqrt{x}.

That is fS(x)2π(x)xf_S(x)\leq 2^{\pi(x)}\sqrt{x}.

So fS(x)=x2π(x)xf_S(x)=x\leq2^{\pi(x)}\sqrt{x}.

Proposition 3

Prove ϑ(x)<(4log2)x\vartheta(x) < (4\log2)x, where ϑ(x)=pxlogp\vartheta(x) = \sum_{p\leq x}\log{p} (Chebyshev function).

Proof:

Consider: 22n>(2nn)=n+12na>n2np 2^{2n} > {2n \choose n} = \prod_{n+1}^{2n}a > \prod_{n}^{2n}p Where p is prime that n<p<2nn<p<2n.

Therefore: 2nlog2>ϑ(2n)ϑ(n) 2n\log{2}>\vartheta(2n) - \vartheta(n) By summing up all this formula by n=1,2,4,...,2m1n=1,2,4,...,2^{m-1}. 2m+1log2>2m+12log2>ϑ(2m) 2^{m+1}\log2 > 2^{m+1}-2\log{2} > \vartheta(2^m) Let 2m1<x<2m2^{m-1} < x < 2^m: ϑ(x)<ϑ(2m)<2m+1log2=4log(2)2m1<4log(2)x \vartheta(x) < \vartheta(2^m) < 2^{m+1}\log{2} = 4\log(2)2^{m-1} < 4\log(2)x

Corollary 1

π(x)<Cxlogx\pi(x) < C \frac{x}{\log{x}}, where C is some positive constant.

Proof:

By proposition 3: ϑ(x)p>xpxlogp \vartheta(x) \geq \sum_{p>\sqrt{x}}^{p\leq x}\log{p} So we have ϑ(x)log(x)(π(x)π(x)) \vartheta(x) \geq \log(\sqrt{x})(\pi(x)-\pi(\sqrt{x})) So: π(x)2logxϑ(x)+x2xlogx \pi(x) \leq \frac{2}{\log{x}}\vartheta(x) + \sqrt{x} \leq 2\frac{x}{\log{x}}

Corollary 2

Prove that π(x)x0\frac{\pi(x)}{x}\to 0 as xx\to\infin

Proof:

Consider: limxπ(x)xϕ(n)n \lim_{x\to\infin}\frac{\pi(x)}{x} \leq \frac{\phi(n)}{n} Since the given primes are always fall into relatively prime of n, for all positive n.

Remind that: ϕ(n)=npn(11p) \phi(n) = n\prod_{p|n}(1-\frac{1}{p})

ϕ(n)n=pn(11p) \frac{\phi(n)}{n} = \prod_{p|n}(1-\frac{1}{p})

When nn\to \infin, each term of product is smaller than 1. limxπ(x)x=0 \lim_{x\to\infin}\frac{\pi(x)}{x} = 0

Proposition 4

π(x)>Cxlogx\pi(x) > C \frac{x}{\log{x}} when C is some positive constant.

Proof:

First prove a little proposition: ordpn!=i=1nordpi=i=1npi \text{ord}_pn! =\sum_{i=1}^n \text{ord}_pi = \sum_{i=1}^{\infin}\lfloor\frac{n}{p^i}\rfloor Now consider: (2nn)2n {2n \choose n} \geq 2^n

ordp(2nn)=ordp(2n)!(n!)2=ordp(2n)!2ordp(n!) \text{ord}_p {2n \choose n} = \text{ord}_p \frac{(2n)!}{(n!)^2} = \text{ord}_p (2n)! -2\text{ord}_p(n!)

ordp(2nn)=i=1t(2npi2npi) \text{ord}_p {2n \choose n} = \sum_{i=1}^{t}(\lfloor\frac{2n}{p^i}\rfloor-2\lfloor\frac{n}{p^i}\rfloor)

Since 2npi2npi\lfloor\frac{2n}{p^i}\rfloor-2\lfloor\frac{n}{p^i}\rfloor is always 0 or 1. ordp(2nn)t \text{ord}_p {2n \choose n} \leq t Here t is the largest integer that pt2np^t\leq 2n and t=log2nlogpt =\lfloor \frac{\log{2n}}{\log{p}} \rfloor ordp(2nn)log2nlogp \text{ord}_p {2n \choose n} \leq \frac{\log{2n}}{\log{p}} So: 2n(2nn)p<2nplog2nlogp 2^n \leq {2n \choose n} \leq \prod_{p<2n}p^{\lfloor\frac{\log{2n}}{\log{p}} \rfloor}

nlog2p<2nlog2nlogplogp n\log2 \leq \sum_{p<2n} \lfloor\frac{\log{2n}}{\log{p}} \rfloor \log{p}

For those p>log2np > \log{\sqrt{2n}}, $ \lfloor\frac{\log{2n}}{\log{p}} \rfloor = 1$ nlog2p<2nlog2nlogplogp+p>2np<2nlogp n\log2 \leq \sum_{p<\sqrt{2n}} \lfloor\frac{\log{2n}}{\log{p}} \rfloor \log{p} + \sum_{p>\sqrt{2n}}^{p<2n}\log{p}

nlog22nlog2n+ϑ(2n) n\log2 \leq \sqrt{2n}\log{2n} + \vartheta(2n)

Now we have: ϑ(2n)>nlog22nlog2n \vartheta(2n) > n\log2 - \sqrt{2n}\log{2n} The second part is relatively small when nn\to \infin

So when n is large enough: ϑ(2n)>Cn \vartheta(2n) > Cn That is: ϑ(x)>Cx \vartheta(x) > C x Now bound with π(x)\pi(x)π(x)ϑ(x)logx>cxlogx \pi(x) \geq \frac{\vartheta(x)}{\log{x}} > c \frac{x}{\log{x}} So π(x)\pi(x) is bound by ϑ(x)\vartheta(x) on both side, that means π(x)logxx1 as x \pi(x) \frac{\log{x}}{x} \to 1\ \text{as}\ x\to \infin Which is Prime Number Theorem