Q1 Prove that k [ x ] k[x] k [ x ] has infinitely many irreducible polynomials.
Proof:
Consider [ f 1 ( x ) , f 2 ( x ) , . . . , f n ( x ) ] [f_1(x),f_2(x),...,f_n(x)] [ f 1 ( x ) , f 2 ( x ) , ... , f n ( x )] with f n ( x ) f_n(x) f n ( x ) as the largest irreducible polynomial.
Then we have a new polynomial f ( x ) = f 1 ( x ) f 2 ( x ) . . . f n ( x ) + 1 f(x)=f_1(x)f_2(x)...f_n(x)+1 f ( x ) = f 1 ( x ) f 2 ( x ) ... f n ( x ) + 1 .
Obviously, f ( x ) f(x) f ( x ) have higher order and cannot be divided by any of the previous polynomials.
Q2 For prime p 1 , p 2 , p 3 , . . . , p n ∈ Z p_1,p_2,p_3,...,p_n \in \Z p 1 , p 2 , p 3 , ... , p n ∈ Z , consider a set of rational number r = a / b , a , b ∈ Z r=a/b,a,b\in\Z r = a / b , a , b ∈ Z and ord p i a ≥ ord p i b \text{ord}_{p_i}a \geq \text{ord}_{p_i}b ord p i a ≥ ord p i b . Prove that this set is a ring, and p 1 , p 2 , . . . p n p_1,p_2,...p_n p 1 , p 2 , ... p n are the only primes.
Proof:
First, prove addition:
Consider r 1 = a / b r_1 = a/b r 1 = a / b and r 2 = c / d r_2=c/d r 2 = c / d . We need to prove r = r 1 + r 2 r=r_1+r_2 r = r 1 + r 2 is still in set: r = a b + c d = a d + b c b d r=\frac{a}{b}+\frac{c}{d} = \frac{ad+bc}{bd} r = b a + d c = b d a d + b c That is to prove: ord p i a d + b c ≥ min ( ord p i a d , ord p i b c ) ≥ min ( ord p i a + ord p i d , ord p i c + ord p i b ) \text{ord}_{p_i}{ad+bc} \geq \min(\text{ord}_{p_i}{ad},\text{ord}_{p_i}{bc})\geq \min(\text{ord}_{p_i}{a}+\text{ord}_{p_i}{d},\text{ord}_{p_i}{c}+\text{ord}_{p_i}{b}) ord p i a d + b c ≥ min ( ord p i a d , ord p i b c ) ≥ min ( ord p i a + ord p i d , ord p i c + ord p i b ) Since ord p i a ≥ ord p i b \text{ord}_{p_i}{a}\geq \text{ord}_{p_i}{b} ord p i a ≥ ord p i b and ord p i c ≥ ord p i d \text{ord}_{p_i}{c}\geq \text{ord}_{p_i}{d} ord p i c ≥ ord p i d
We shall see: ord p i a d + b c > ord p i b d \text{ord}_{p_i}{ad+bc} > \text{ord}_{p_i}{bd} ord p i a d + b c > ord p i b d Then prove multiplication: r = r 1 r 2 = a c b d r = r_1r_2 = \frac{ac}{bd} r = r 1 r 2 = b d a c
ord p i a c = ord p i a + ord p i c ≥ ord p i b + ord p i d ≥ ord p i b d \text{ord}_{p_i}{ac} = \text{ord}_{p_i}{a}+\text{ord}_{p_i}{c} \geq \text{ord}_{p_i}{b} + \text{ord}_{p_i}{d} \geq \text{ord}_{p_i}{bd} ord p i a c = ord p i a + ord p i c ≥ ord p i b + ord p i d ≥ ord p i b d
So it is a ring.
For a prime in this set, we have a b ∣ c e d f ⟺ a b ∣ c d or a b ∣ e f \frac{a}{b}|\frac{ce}{df} \iff \frac{a}{b}|\frac{c}{d}\ \text{or}\ \frac{a}{b}|\frac{e}{f} b a ∣ df ce ⟺ b a ∣ d c or b a ∣ f e .
So by all means, a , b a,b a , b should both be prime if b ≠ 1 b\neq 1 b = 1 .
Then ord p i a = 1 \text{ord}_{p_i}a = 1 ord p i a = 1 when a = p i a=p_i a = p i and so does b. If b ≠ 1 b\neq 1 b = 1 , ord b b = 1 > ord b a = 0 \text{ord}_bb = 1 > \text{ord}_ba = 0 ord b b = 1 > ord b a = 0 that will make a / b a/b a / b not in this set. So all primes should be p / 1 p/1 p /1 .
Q3 Prove there are infinitely many prime number.
Proof:
If there are finite many prime: p 1 , p 2 , p 3 , . . . , p l p_1,p_2,p_3,...,p_l p 1 , p 2 , p 3 , ... , p l . Then for n = p 1 p 2 p 3 . . . p l n=p_1p_2p_3...p_l n = p 1 p 2 p 3 ... p l , φ ( n ) = 1 \varphi(n)=1 φ ( n ) = 1 .
However: φ ( n ) = n ∏ i = 1 l ( 1 − 1 / p i ) = 1 \varphi(n)=n\prod_{i=1}^l(1-1/p_i)=1 φ ( n ) = n i = 1 ∏ l ( 1 − 1/ p i ) = 1 That is ∏ i = 1 l ( 1 − 1 / p i ) = ∏ i = 1 l 1 / p i \prod_{i=1}^l(1-1/p_i)=\prod_{i=1}^l 1/p_i i = 1 ∏ l ( 1 − 1/ p i ) = i = 1 ∏ l 1/ p i That's a contradiction.
Q4 If a is a non-zero integer, then for m > n m>n m > n that ( a 2 n + 1 , a 2 m + 1 ) = 1 or 2 (a^{2^n}+1,a^{2^m}+1)=1\ \text{or}\ 2 ( a 2 n + 1 , a 2 m + 1 ) = 1 or 2 .
Proof: a 2 m − 1 = ( a 2 m − 1 + 1 ) ( a 2 m − 1 − 1 ) = ( a 2 m − 1 + 1 ) ( a 2 m − 2 + 1 ) ( a 2 m − 2 − 1 ) = . . . = . . . ( a 2 n + 1 ) ( a 2 n + 1 ) a^{2^m}-1 = (a^{2^{m-1}}+1)(a^{2^{m-1}}-1) = (a^{2^{m-1}}+1)(a^{2^{m-2}}+1)(a^{2^{m-2}}-1) = ...= ...(a^{2^{n}}+1)(a^{2^{n}}+1) a 2 m − 1 = ( a 2 m − 1 + 1 ) ( a 2 m − 1 − 1 ) = ( a 2 m − 1 + 1 ) ( a 2 m − 2 + 1 ) ( a 2 m − 2 − 1 ) = ... = ... ( a 2 n + 1 ) ( a 2 n + 1 ) So we know, if some prime p ∣ a 2 n + 1 p|a^{2^n}+1 p ∣ a 2 n + 1 , then it must be p ∣ a 2 m − 1 p|a^{2^m}-1 p ∣ a 2 m − 1 .
Assume an integer c 1 c_1 c 1 such that c 1 p = a 2 n + 1 c_1p=a^{2^n}+1 c 1 p = a 2 n + 1
That is, a 2 m + 1 = c 2 p + 2 a^{2^m}+1=c_2p+2 a 2 m + 1 = c 2 p + 2 .
So our question is actually ( c 2 p + 2 , c 1 p ) (c_2p+2,c_1p) ( c 2 p + 2 , c 1 p )
By the Euclidean algorithm , that is ( c p , 2 ) (cp,2) ( c p , 2 )
So when c p cp c p is odd, that is, a 2 m a^{2^m} a 2 m is even, meaning a a a is even, G C D = 1 GCD=1 GC D = 1 .
When c p cp c p is even, that is, a a a is odd, G C D = 2 GCD=2 GC D = 2 .
Q5 Prove there are infinitely many primes.
Proof:
Consider 2 2 n + 1 2^{2^n}+1 2 2 n + 1 ; for a prime, there is only one n allowing it to p ∣ 2 2 n + 1 p|2^{2^n}+1 p ∣ 2 2 n + 1 .
So since n n n are infinity many, there must be infinitely many primes.
Q7 Prove n ! n ≤ ∏ p ∣ n ! p 1 / ( p − 1 ) \sqrt[n]{n!}\leq\prod_{p|n!}p^{1/(p-1)} n n ! ≤ ∏ p ∣ n ! p 1/ ( p − 1 )
Proof:
First: ord p n ! = ⌊ n / p ⌋ + ⌊ n / p 2 ⌋ + ⌊ n / p 3 ⌋ + . . . \text{ord}_pn!=\lfloor n/p\rfloor+\lfloor n/p^2\rfloor+\lfloor n/p^3\rfloor+... ord p n ! = ⌊ n / p ⌋ + ⌊ n / p 2 ⌋ + ⌊ n / p 3 ⌋ + ...
ord p n ! ≤ n ( 1 / p + 1 / p 2 + 1 / p 3 . . . ) = n / ( p − 1 ) \text{ord}_pn!\leq n(1/p+1/p^2+1/p^3...)=n/(p-1) ord p n ! ≤ n ( 1/ p + 1/ p 2 + 1/ p 3 ... ) = n / ( p − 1 )
So, we have: n ! ≤ ∏ p ∣ n ! p n / ( p − 1 ) n! \leq \prod_{p|n!}p^{n/(p-1)} n ! ≤ p ∣ n ! ∏ p n / ( p − 1 ) That is: n ! n ≤ ∏ p ∣ n ! p 1 / ( p − 1 ) \sqrt[n]{n!}\leq\prod_{p|n!}p^{1/(p-1)} n n ! ≤ p ∣ n ! ∏ p 1/ ( p − 1 )
Q8 Prove there are infinitely many primes.
Proof:
By Q7 , the left side can go to infinity when n → ∞ n\to \infin n → ∞
So the right side should have infinity many terms, that is, infinitely many primes.
Q9 Show that a multiplicative function is completely determined by its value on prime powers.
Proof:
A function is multiplicative if f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f ( ab ) = f ( a ) f ( b ) whenever ( a , b ) = 1 (a,b)=1 ( a , b ) = 1 .
So: f ( x ) = f ( ∏ i ∞ p i a i ) f(x)=f(\prod_i^{\infin}p_i^{a_i}) f ( x ) = f ( i ∏ ∞ p i a i )
Q10 Prove that if f ( x ) f(x) f ( x ) is multiplicative, then g ( x ) = ∑ d ∣ x f ( d ) g(x)=\sum_{d|x}f(d) g ( x ) = ∑ d ∣ x f ( d ) is also multiplicative.
Proof:
Consider n = a b n=ab n = ab where a = ∏ p ∈ S a p a=\prod_{p\in S_a}p a = ∏ p ∈ S a p and b = ∏ p ∈ S b p b=\prod_{p\in S_b}p b = ∏ p ∈ S b p . Here, S a , S b S_a,S_b S a , S b are two set of primes unique to each other, also in length of l a , l b l_a,l_b l a , l b .
Then: g ( a ) = ∑ i = 0 l a f ( ( l a i ) ) = ∑ i = 0 l a ∏ p ∈ ( l a i ) p g(a) = \sum_{i=0}^{l_a}f({l_a \choose i}) = \sum_{i=0}^{l_a}\prod_{p \in {l_a \choose i}} p g ( a ) = i = 0 ∑ l a f ( ( i l a ) ) = i = 0 ∑ l a p ∈ ( i l a ) ∏ p
g ( b ) = ∑ i = 0 l b f ( ( l b i ) ) = ∑ i = 0 l b ∏ p ∈ ( l b i ) p g(b) = \sum_{i=0}^{l_b}f({l_b \choose i}) = \sum_{i=0}^{l_b}\prod_{p \in {l_b \choose i}} p g ( b ) = i = 0 ∑ l b f ( ( i l b ) ) = i = 0 ∑ l b p ∈ ( i l b ) ∏ p
So g ( a ) g ( b ) = ∑ i = 0 l a + l b f ( ( l a + l b i ) ) = ∑ i = 0 l a + l b ∏ p ∈ ( l a + l b i ) p = g ( a b ) g(a)g(b) = \sum_{i=0}^{l_a+l_b}f({l_a+l_b \choose i}) = \sum_{i=0}^{l_a+l_b}\prod_{p \in {l_a+l_b \choose i}} p = g(ab) g ( a ) g ( b ) = i = 0 ∑ l a + l b f ( ( i l a + l b ) ) = i = 0 ∑ l a + l b p ∈ ( i l a + l b ) ∏ p = g ( ab )
Q11 Prove ϕ ( n ) = n ∑ d ∣ n μ ( d ) / d \phi(n)=n\sum_{d|n}\mu(d)/d ϕ ( n ) = n ∑ d ∣ n μ ( d ) / d .
Proof:
By Q9 and Q10, we can first prove μ ( d ) / d \mu(d)/d μ ( d ) / d multiplicative.
By definition:
μ ( a b ) = ( − 1 ) ν ( a b ) = ( − 1 ) ν ( a ) + ν ( b ) \mu(ab) = (-1)^{\nu(ab)} = (-1)^{\nu(a)+\nu(b)} μ ( ab ) = ( − 1 ) ν ( ab ) = ( − 1 ) ν ( a ) + ν ( b ) as along as ( a , b ) = 1 (a,b)=1 ( a , b ) = 1 .
So μ ( a b ) a b = μ ( a ) a μ ( b ) b \frac{\mu(ab)}{ab} = \frac{\mu(a)}{a}\frac{\mu(b)}{b} ab μ ( ab ) = a μ ( a ) b μ ( b ) As same as in Theorem 2 , f ( x ) = x f(x) = x f ( x ) = x is multiplicative: n = ∑ d ∣ n ϕ ( d ) ⟹ ϕ ( d ) = ∑ d ∣ n μ ( d ) n d = n ∑ d ∣ n μ ( d ) / d n=\sum_{d|n}\phi(d) \implies \phi(d) = \sum_{d|n}\mu(d)\frac{n}{d} = n\sum_{d|n}\mu(d)/d n = d ∣ n ∑ ϕ ( d ) ⟹ ϕ ( d ) = d ∣ n ∑ μ ( d ) d n = n d ∣ n ∑ μ ( d ) / d
Q12 Find formulas for:
∑ d ∣ n μ ( d ) ϕ ( d ) \sum_{d|n}\mu(d)\phi(d) ∑ d ∣ n μ ( d ) ϕ ( d ) ∑ d ∣ n μ ( d ) 2 ϕ ( d ) 2 \sum_{d|n}\mu(d)^2\phi(d)^2 ∑ d ∣ n μ ( d ) 2 ϕ ( d ) 2 ∑ d ∣ n μ ( d ) / ϕ ( d ) \sum_{d|n}\mu(d)/\phi(d) ∑ d ∣ n μ ( d ) / ϕ ( d ) By Q11 , they are all multiplicative: μ ( a b ) ϕ ( a b ) = ( − 1 ) ν ( a b ) a b ∏ p ∣ a b ( 1 − 1 / p ) = μ ( a ) ϕ ( a ) μ ( b ) ϕ ( b ) \mu(ab)\phi(ab) = (-1)^{\nu(ab)}ab\prod_{p|ab}(1-1/p) = \mu(a)\phi(a)\mu(b)\phi(b) μ ( ab ) ϕ ( ab ) = ( − 1 ) ν ( ab ) ab p ∣ ab ∏ ( 1 − 1/ p ) = μ ( a ) ϕ ( a ) μ ( b ) ϕ ( b ) The rest two are the same.
So the result is determined by its primes powers (as in Q9 )
Assume G 1 ( n ) = ∑ d ∣ n μ ( d ) ϕ ( d ) G_1(n)=\sum_{d|n}\mu(d)\phi(d) G 1 ( n ) = ∑ d ∣ n μ ( d ) ϕ ( d ) , and n = ∏ i = 1 l p i a i n=\prod_{i=1}^{l}p_i^{a_i} n = ∏ i = 1 l p i a i G 1 ( n ) = G 1 ( p 1 a 1 ) G 1 ( p 2 a 2 ) . . . G 1 ( p l a l ) = ∏ i = 1 l μ ( p i ) ϕ ( p i ) G_1(n) = G_1(p_1^{a_1})G_1(p_2^{a^2})...G_1(p_l^{a^l})=\prod_{i=1}^{l}\mu(p_i)\phi(p_i) G 1 ( n ) = G 1 ( p 1 a 1 ) G 1 ( p 2 a 2 ) ... G 1 ( p l a l ) = i = 1 ∏ l μ ( p i ) ϕ ( p i )
G 1 ( n ) = ( 1 − p 1 ) ( 1 − p 2 ) ( 1 − p 3 ) . . . ( 1 − p l ) G_1(n)=(1-p_1)(1-p_2)(1-p_3)...(1-p_l) G 1 ( n ) = ( 1 − p 1 ) ( 1 − p 2 ) ( 1 − p 3 ) ... ( 1 − p l )
Assume G 2 ( n ) = ∑ d ∣ n μ ( d ) 2 ϕ ( d ) 2 G_2(n)=\sum_{d|n}\mu(d)^2\phi(d)^2 G 2 ( n ) = ∑ d ∣ n μ ( d ) 2 ϕ ( d ) 2 G 2 ( n ) = ∏ i = 1 l μ ( p i ) 2 ϕ ( p i ) 2 = ( p 1 − 1 ) 2 ( p 2 − 1 ) 2 . . . ( p l − 1 ) 2 G_2(n) =\prod_{i=1}^{l}\mu(p_i)^2\phi(p_i)^2 = (p_1-1)^2(p_2-1)^2...(p_l-1)^2 G 2 ( n ) = i = 1 ∏ l μ ( p i ) 2 ϕ ( p i ) 2 = ( p 1 − 1 ) 2 ( p 2 − 1 ) 2 ... ( p l − 1 ) 2 Assume G 3 ( n ) = ∑ d ∣ n μ ( d ) / ϕ ( d ) G_3(n)=\sum_{d|n}\mu(d)/\phi(d) G 3 ( n ) = ∑ d ∣ n μ ( d ) / ϕ ( d ) G 3 ( n ) = ∏ i = 1 l μ ( p i ) / ϕ ( p i ) = 1 1 − p 1 1 1 − p 2 . . . 1 1 − p l G_3(n)=\prod_{i=1}^{l}\mu(p_i)/\phi(p_i)=\frac{1}{1-p_1}\frac{1}{1-p_2}...\frac{1}{1-p_l} G 3 ( n ) = i = 1 ∏ l μ ( p i ) / ϕ ( p i ) = 1 − p 1 1 1 − p 2 1 ... 1 − p l 1
Q13 Show σ k ( n ) = ∑ d ∣ n d k \sigma_k(n)=\sum_{d|n}d^k σ k ( n ) = ∑ d ∣ n d k formula and prove that it is multiplicative.
Proof:
First prove d k d^k d k is multiplicative. That ( a b ) k = a k b k (ab)^k=a^kb^k ( ab ) k = a k b k . So σ k ( n ) \sigma_k(n) σ k ( n ) is multiplicative.
So σ k ( n ) = ∏ i = 1 l p i ( a i + k ) = n ∏ i = 1 l p i k \sigma_k(n)=\prod_{i=1}^lp_i^{({a_i}+k)}=n\prod_{i=1}^lp_i^k σ k ( n ) = i = 1 ∏ l p i ( a i + k ) = n i = 1 ∏ l p i k
Q15 Prove that ∑ d ∣ n μ ( n / d ) ν ( d ) = 1 \sum_{d|n}\mu(n/d)\nu(d)=1 ∑ d ∣ n μ ( n / d ) ν ( d ) = 1 and ∑ d ∣ n μ ( n / d ) σ ( d ) = 1 \sum_{d|n}\mu(n/d)\sigma(d)=1 ∑ d ∣ n μ ( n / d ) σ ( d ) = 1
Proof:
By Q10 use same way to prove that if f ( n ) f(n) f ( n ) is multiplicative, then h ( n ) = ∑ d ∣ n μ ( n / d ) f ( d ) h(n)=\sum_{d|n}\mu(n/d)f(d) h ( n ) = ∑ d ∣ n μ ( n / d ) f ( d ) is also multiplicative.
Then ∑ d ∣ n μ ( n / d ) ν ( d ) = ∏ i = 1 l ( μ ( p i a i / p 1 a i ) ν ( p i a i ) + μ ( p i a i / p i a i − 1 ) ν ( p i a i − 1 ) ) = ∏ i = 1 l ( a i + 1 − a i ) = 1 \sum_{d|n}\mu(n/d)\nu(d)=\prod_{i=1}^{l}(\mu(p_i^{a_i}/p_1^{a_i})\nu(p_i^{a_i})+\mu(p_i^{a_i}/p_i^{a_i-1})\nu(p_i^{a_i-1})) = \prod_{i=1}^{l}(a_i+1-a_i) = 1 d ∣ n ∑ μ ( n / d ) ν ( d ) = i = 1 ∏ l ( μ ( p i a i / p 1 a i ) ν ( p i a i ) + μ ( p i a i / p i a i − 1 ) ν ( p i a i − 1 )) = i = 1 ∏ l ( a i + 1 − a i ) = 1
∑ d ∣ n μ ( n / d ) σ ( d ) = ∏ i = 1 l ( σ ( p i a i ) − σ ( p i a i − 1 ) ) = ∏ i = 1 l p i a i + 1 − 1 − p i a i + 1 p i − 1 = ∏ i = 1 l p i a i = n \sum_{d|n}\mu(n/d)\sigma(d)=\prod_{i=1}^{l}(\sigma(p_i^{a_i})-\sigma(p_i^{a_i-1}))=\prod_{i=1}^{l}\frac{p_i^{a_i+1}-1-p_i^{a_i}+1}{p_i-1}=\prod_{i=1}^{l}p_i^{a_i}=n d ∣ n ∑ μ ( n / d ) σ ( d ) = i = 1 ∏ l ( σ ( p i a i ) − σ ( p i a i − 1 )) = i = 1 ∏ l p i − 1 p i a i + 1 − 1 − p i a i + 1 = i = 1 ∏ l p i a i = n
Q16 Prove that ν ( n ) \nu(n) ν ( n ) is odd iff n is a square.
Proof:
For n = ∏ i = 1 l p i a i n=\prod_{i=1}^{l}p_i^{a_i} n = ∏ i = 1 l p i a i ν ( n ) = ∏ i = 1 l ( a i + 1 ) \nu(n)=\prod_{i=1}^{l}(a_i+1) ν ( n ) = i = 1 ∏ l ( a i + 1 ) If ν ( n ) \nu(n) ν ( n ) is odd, then every term of ( a i + 1 ) (a_i+1) ( a i + 1 ) must be odd, that is, a i a_i a i is even. So n n n is a square.
Q17 Prove that σ ( n ) \sigma(n) σ ( n ) is odd iff n is a square or twice a square.
Proof:
Still, assume n = ∏ i = 1 l p i a i n=\prod_{i=1}^{l}p_i^{a_i} n = ∏ i = 1 l p i a i σ ( n ) = ∏ i = 1 l ∑ b j = 0 a i p i b j \sigma(n)=\prod_{i=1}^{l}\sum_{b_j=0}^{a_i}p_i^{b_j} σ ( n ) = i = 1 ∏ l b j = 0 ∑ a i p i b j If ν ( n ) \nu(n) ν ( n ) is odd, then every term shall be odd.
For each term, if p ≠ 2 p\neq 2 p = 2 , then p p p must be odd. So there are a i + 1 a_i+1 a i + 1 odd number (p b p^b p b ) summing up. To keep this term to be odd, a i + 1 a_i+1 a i + 1 must be odd, that is, a i a_i a i is even, and n is a square.
If p = 2 p=2 p = 2 , this term must be odd, so n n n could be twice a square.
Q18 Prove that ϕ ( m ) ϕ ( n ) = ϕ ( ( m , n ) ) ϕ ( [ m , n ] ) \phi(m)\phi(n)=\phi((m,n))\phi([m,n]) ϕ ( m ) ϕ ( n ) = ϕ (( m , n )) ϕ ([ m , n ])
Proof:
Consider m = p m 2 p n p a , n = p m p n 2 p b m=p_m^2p_np_a, n=p_mp_n^2p_b m = p m 2 p n p a , n = p m p n 2 p b . Therefore, ( m , n ) = p m p n , [ m , n ] = p m 2 p n 2 p a p b (m,n)=p_mp_n,[m,n]=p_m^2p_n^2p_ap_b ( m , n ) = p m p n , [ m , n ] = p m 2 p n 2 p a p b . And p m , p n , p a , p b p_m,p_n,p_a,p_b p m , p n , p a , p b are relatively prime. ϕ ( [ m , n ] ) = p m ϕ ( p m ) p n ϕ ( p n ) ϕ ( p a ) ϕ ( p b ) \phi([m,n]) =p_m\phi(p_m)p_n\phi(p_n)\phi(p_a)\phi(p_b) ϕ ([ m , n ]) = p m ϕ ( p m ) p n ϕ ( p n ) ϕ ( p a ) ϕ ( p b )
ϕ ( ( m , n ) ) = ϕ ( p m p n ) = ϕ ( p m ) ϕ ( p n ) \phi((m,n))=\phi(p_mp_n)=\phi(p_m)\phi(p_n) ϕ (( m , n )) = ϕ ( p m p n ) = ϕ ( p m ) ϕ ( p n )
ϕ ( m ) = ϕ ( p m 2 p n p a ) = p m ϕ ( p m ) ϕ ( p n ) ϕ ( p a ) \phi(m) = \phi(p_m^2p_np_a)=p_m\phi(p_m)\phi(p_n)\phi(p_a) ϕ ( m ) = ϕ ( p m 2 p n p a ) = p m ϕ ( p m ) ϕ ( p n ) ϕ ( p a )
ϕ ( n ) = ϕ ( p n 2 p m p a ) = p n ϕ ( p m ) ϕ ( p n ) ϕ ( p a ) \phi(n) = \phi(p_n^2p_mp_a)=p_n\phi(p_m)\phi(p_n)\phi(p_a) ϕ ( n ) = ϕ ( p n 2 p m p a ) = p n ϕ ( p m ) ϕ ( p n ) ϕ ( p a )
lhs = ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b ) \text{lhs} = \phi(p_m)^2\phi(p_n)^2\phi(p_a)\phi(p_b) lhs = ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b )
rhs = ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b ) \text{rhs} = \phi(p_m)^2\phi(p_n)^2\phi(p_a)\phi(p_b) rhs = ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b )
Q19 Prove that ϕ ( m n ) ϕ ( ( m , n ) ) = ( m , n ) ϕ ( m ) ϕ ( n ) \phi(mn)\phi((m,n))=(m,n)\phi(m)\phi(n) ϕ ( mn ) ϕ (( m , n )) = ( m , n ) ϕ ( m ) ϕ ( n )
Proof: lhs = ϕ ( p m 3 p n 3 p a p b ) ϕ ( p m p n ) = p m 2 p n 2 ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b ) \text{lhs} = \phi(p_m^3p_n^3p_ap_b)\phi(p_mp_n)=p_m^2p_n^2\phi(p_m)^2\phi(p_n)^2\phi(p_a)\phi(p_b) lhs = ϕ ( p m 3 p n 3 p a p b ) ϕ ( p m p n ) = p m 2 p n 2 ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b )
rhs = p m p n p m ϕ ( p m ) ϕ ( p n ) ϕ ( p a ) p n ϕ ( p m ) ϕ ( p n ) ϕ ( p a ) = p m 2 p n 2 ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b ) \text{rhs}=p_mp_np_m\phi(p_m)\phi(p_n)\phi(p_a)p_n\phi(p_m)\phi(p_n)\phi(p_a)=p_m^2p_n^2\phi(p_m)^2\phi(p_n)^2\phi(p_a)\phi(p_b) rhs = p m p n p m ϕ ( p m ) ϕ ( p n ) ϕ ( p a ) p n ϕ ( p m ) ϕ ( p n ) ϕ ( p a ) = p m 2 p n 2 ϕ ( p m ) 2 ϕ ( p n ) 2 ϕ ( p a ) ϕ ( p b )
So lhs = rhs \text{lhs}=\text{rhs} lhs = rhs
Q20 Prove that ∏ d ∣ n d = n ν ( n ) / 2 \prod_{d|n}d=n^{\nu(n)/2} ∏ d ∣ n d = n ν ( n ) /2
Proof:
For each d ∣ n d|n d ∣ n , there must be a n / d ∣ n n/d|n n / d ∣ n .
So there are ν ( n ) \nu(n) ν ( n ) dividers, and there are ν ( n ) / 2 \nu(n)/2 ν ( n ) /2 pairs of d ∗ n / d d*n/d d ∗ n / d .
So the result is n ν ( n ) / 2 n^{\nu(n)/2} n ν ( n ) /2
Q21 Define Von Mangoldt function Λ ( n ) = log p \Lambda(n)=\log{p} Λ ( n ) = log p if n is a power of p p p , otherwise 0. Prove that ∑ d ∣ n μ ( n / d ) log d = Λ ( n ) \sum_{d|n}\mu(n/d)\log{d}=\Lambda(n) ∑ d ∣ n μ ( n / d ) log d = Λ ( n ) .
Proof:
First, assume n = ∏ i = 1 l p i a i n=\prod_{i=1}^{l}p_i^{a_i} n = ∏ i = 1 l p i a i ∑ d ∣ n Λ ( d ) = ∑ i = 1 l ∑ a = 1 a i log p i = log ( ∏ i = 1 l p i a i ) = log ( n ) \sum_{d|n}\Lambda(d)=\sum_{i=1}^{l}\sum_{a=1}^{a_i}\log{p_i}=\log{(\prod_{i=1}^{l}p_i^{a_i})}=\log(n) d ∣ n ∑ Λ ( d ) = i = 1 ∑ l a = 1 ∑ a i log p i = log ( i = 1 ∏ l p i a i ) = log ( n ) Then apply the Möbius inversion: Λ ( n ) = ∑ d ∣ n μ ( n / d ) log d \Lambda(n)=\sum_{d|n}\mu(n/d)\log{d} Λ ( n ) = d ∣ n ∑ μ ( n / d ) log d
Q22 Show that the sum of all integers t t t such that 1 ≤ t ≤ n 1\leq t\leq n 1 ≤ t ≤ n and ( t , n ) = 1 (t,n)=1 ( t , n ) = 1 is 1 / 2 ⋅ n ϕ ( n ) 1/2 \cdot n\phi(n) 1/2 ⋅ n ϕ ( n ) .
Proof:
For each ( t , n ) = 1 (t,n)=1 ( t , n ) = 1 , there shall be a ( n − t , n ) = 1 (n-t,n)=1 ( n − t , n ) = 1 and obviously 1 ≤ n − t ≤ n 1 \leq n-t \leq n 1 ≤ n − t ≤ n .
So we can pair up all relatively primes, the number of pair shall be 1 / 2 ϕ ( n ) 1/2 \phi(n) 1/2 ϕ ( n ) unless t = n / 2 t=n/2 t = n /2 . And each pair, on average, shall be 1 / 2 ∗ n 1/2*n 1/2 ∗ n
So the sum of t t t shall be 1 / 2 ∗ n ϕ ( n ) 1/2*n\phi(n) 1/2 ∗ n ϕ ( n )
Q23 For a function f ( x ) f(x) f ( x ) , define ψ ( n ) \psi(n) ψ ( n ) as the number of f ( j ) , j = 1 , 2 , . . . , n f(j), j=1,2,...,n f ( j ) , j = 1 , 2 , ... , n such that ( f ( j ) , n ) = 1 (f(j),n)=1 ( f ( j ) , n ) = 1 . Prove that ψ ( n ) \psi(n) ψ ( n ) is multiplicative and ψ ( p t ) = p t − 1 ψ ( p ) \psi(p^t)=p^{t-1}\psi(p) ψ ( p t ) = p t − 1 ψ ( p ) .
Proof:
As same as the proof for ϕ ( n ) \phi(n) ϕ ( n ) , we can consider a series f ( 1 ) n , f ( 2 ) n , . . . , f ( n ) n \frac{f(1)}{n},\frac{f(2)}{n},...,\frac{f(n)}{n} n f ( 1 ) , n f ( 2 ) , ... , n f ( n )
We shall have same result: ∑ d ∣ n ψ ( d ) = n \sum_{d|n}\psi(d)=n d ∣ n ∑ ψ ( d ) = n So by Möbius inverse: ψ ( n ) = ∑ d ∣ n μ ( d ) n d \psi(n)=\sum_{d|n}\mu(d)\frac{n}{d} ψ ( n ) = d ∣ n ∑ μ ( d ) d n That is ψ ( n ) / n \psi(n)/n ψ ( n ) / n is multiplicative. So ψ ( n ) \psi(n) ψ ( n ) is multiplicative by Q10 .
For ψ ( p t ) \psi(p^t) ψ ( p t ) , the number of term remains d ∣ p t d|p^t d ∣ p t the same, so ψ ( p t ) = p t ∑ d ∣ p μ ( p ) = p t − 1 ψ ( p ) \psi(p^t)=p^t\sum_{d|p}\mu(p)=p^{t-1}\psi(p) ψ ( p t ) = p t ∑ d ∣ p μ ( p ) = p t − 1 ψ ( p )
Also, ψ ( p a ) = 1 − 1 / p = ψ ( p ) \psi(p^a)=1-1/p=\psi(p) ψ ( p a ) = 1 − 1/ p = ψ ( p ) So by multiplicative: ψ ( n ) n = ∏ i = 1 l ψ ( p a i ) p i a i = ∏ p ∣ n ψ ( p ) p \frac{\psi(n)}{n}=\prod_{i=1}^{l}\frac{\psi(p^{a_i})}{p_i^{a_i}}=\prod_{p|n}\frac{\psi(p)}{p} n ψ ( n ) = i = 1 ∏ l p i a i ψ ( p a i ) = p ∣ n ∏ p ψ ( p )
Q25 Riemann Zeta Function ζ ( s ) = ∑ n = 1 ∞ 1 / n s \zeta(s)=\sum_{n=1}^\infin 1/n^s ζ ( s ) = ∑ n = 1 ∞ 1/ n s . Prove the formal identity (Euler's Identity) ζ ( s ) = ∏ p ( 1 − ( 1 / p s ) ) − 1 \zeta(s)=\prod_{p}(1-(1/p^s))^{-1} ζ ( s ) = ∏ p ( 1 − ( 1/ p s ) ) − 1
Proof:
Consider each n: n = ∏ p p k n=\prod_{p}p^k n = p ∏ p k So the Zeta function actually are summing all different compositions of prime powers. ζ ( s ) = ∏ p ∑ k 1 p k s \zeta(s)=\prod_p\sum_k\frac{1}{p^{ks}} ζ ( s ) = p ∏ k ∑ p k s 1 For each prime term, this is a sum of a geometric series: ∑ k 1 p k s = ( 1 − 1 p s ) − 1 \sum_k\frac{1}{p^{ks}}=(1-\frac{1}{p^s})^{-1} k ∑ p k s 1 = ( 1 − p s 1 ) − 1 So: ζ ( s ) = ∏ p ( 1 − ( 1 / p s ) ) − 1 \zeta(s)=\prod_p(1-(1/p^s))^{-1} ζ ( s ) = p ∏ ( 1 − ( 1/ p s ) ) − 1
Q26 Prove some identities.
ζ ( s ) − 1 = ∑ n = 1 ∞ μ ( n ) n s \zeta(s)^{-1}=\sum_{n=1}^{\infin}\frac{\mu(n)}{n^s} ζ ( s ) − 1 = ∑ n = 1 ∞ n s μ ( n ) ζ ( s ) 2 = ∑ n = 1 ∞ ν ( n ) n s \zeta(s)^2=\sum_{n=1}^{\infin}\frac{\nu(n)}{n^s} ζ ( s ) 2 = ∑ n = 1 ∞ n s ν ( n ) $ \zeta(s)\zeta(s-1)=\sum_{n=1}^{\infin}\frac{\sigma(n)}{n^s}$ Proof:
Assume two function: F ( s ) = ∑ n = 1 ∞ f ( n ) n s , G ( s ) = ∑ n = 1 ∞ g ( n ) n s F(s)=\sum_{n=1}^\infin\frac{f(n)}{n^s},G(s)=\sum_{n=1}^\infin\frac{g(n)}{n^s} F ( s ) = n = 1 ∑ ∞ n s f ( n ) , G ( s ) = n = 1 ∑ ∞ n s g ( n ) Consider Dirichlet convolution: F ( s ) G ( s ) = ∑ n − 1 ∞ ∑ m − 1 ∞ f ( n ) g ( m ) ( m n ) s = ∑ m n = 1 ∞ f ∗ g ( m n ) ( m n ) s F(s)G(s)=\sum_{n-1}^{\infin}\sum_{m-1}^{\infin}\frac{f(n)g(m)}{(mn)^s}= \sum_{mn=1}^{\infin}\frac{f*g(mn)}{(mn)^s} F ( s ) G ( s ) = n − 1 ∑ ∞ m − 1 ∑ ∞ ( mn ) s f ( n ) g ( m ) = mn = 1 ∑ ∞ ( mn ) s f ∗ g ( mn ) Let f ( s ) = 1 f(s)=1 f ( s ) = 1 , then F ( s ) = ∑ n = 1 ∞ 1 n s = ζ ( s ) F(s)=\sum_{n=1}^{\infin}\frac{1}{n^s}=\zeta(s) F ( s ) = ∑ n = 1 ∞ n s 1 = ζ ( s ) .
Assume h ( s ) = 1 ∗ g ( s ) h(s)=1*g(s) h ( s ) = 1 ∗ g ( s ) H ( s ) = ∑ n = 1 ∞ h ( n ) n s = F ( s ) G ( s ) = ζ ( s ) ∑ n = 1 ∞ g ( n ) n s H(s)=\sum_{n=1}^{\infin}\frac{h(n)}{n^s}=F(s)G(s)=\zeta(s)\sum_{n=1}^\infin\frac{g(n)}{n^s} H ( s ) = n = 1 ∑ ∞ n s h ( n ) = F ( s ) G ( s ) = ζ ( s ) n = 1 ∑ ∞ n s g ( n )
h ( n ) = ∑ d ∣ n g ( d ) h(n)=\sum_{d|n}g(d) h ( n ) = d ∣ n ∑ g ( d )
Let g ( n ) = μ ( n ) g(n)=\mu(n) g ( n ) = μ ( n ) : h ( 1 ) = μ ( 1 ) = 1 h(1)=\mu(1)=1 h ( 1 ) = μ ( 1 ) = 1
h ( n ) = ∑ d ∣ n μ ( n ) = 0 h(n)=\sum_{d|n}\mu(n) = 0 h ( n ) = d ∣ n ∑ μ ( n ) = 0 So: H ( s ) = 1 = ζ ( s ) ∑ n = 1 ∞ μ ( n ) n s H(s)=1=\zeta(s)\sum_{n=1}^{\infin}\frac{\mu(n)}{n^s} H ( s ) = 1 = ζ ( s ) n = 1 ∑ ∞ n s μ ( n )
ζ ( s ) − 1 = ∑ n = 1 ∞ μ ( n ) n s \zeta(s)^{-1}=\sum_{n=1}^{\infin}\frac{\mu(n)}{n^s} ζ ( s ) − 1 = n = 1 ∑ ∞ n s μ ( n )
Let g ( n ) = n 0 g(n)=n^0 g ( n ) = n 0 : h ( n ) = ∑ d ∣ n d 0 = ν ( n ) h(n)=\sum_{d|n}d^0=\nu(n) h ( n ) = d ∣ n ∑ d 0 = ν ( n ) Now, G ( s ) = ζ ( s ) G(s)=\zeta(s) G ( s ) = ζ ( s ) ∑ n = 1 ∞ ν ( n ) n s = ζ ( s ) 2 \sum_{n=1}^{\infin}\frac{\nu(n)}{n^s} = \zeta(s)^2 n = 1 ∑ ∞ n s ν ( n ) = ζ ( s ) 2 This can be generalize to g ( n ) = n α g(n)=n^\alpha g ( n ) = n α h ( n ) = ∑ d ∣ n d α = σ α ( n ) h(n)=\sum_{d|n}d^\alpha = \sigma_\alpha(n) h ( n ) = d ∣ n ∑ d α = σ α ( n ) When α = 1 \alpha=1 α = 1 , its σ ( n ) \sigma(n) σ ( n ) ∑ n = 1 ∞ σ ( n ) n s = ζ ( s ) ζ ( s − 1 ) \sum_{n=1}^{\infin}\frac{\sigma(n)}{n^s} = \zeta(s)\zeta(s-1) n = 1 ∑ ∞ n s σ ( n ) = ζ ( s ) ζ ( s − 1 ) More generally: ∑ n = 1 ∞ σ α ( n ) n s = ζ ( s ) ζ ( s − α ) \sum_{n=1}^{\infin}\frac{\sigma_\alpha(n)}{n^s} = \zeta(s)\zeta(s-\alpha) n = 1 ∑ ∞ n s σ α ( n ) = ζ ( s ) ζ ( s − α )
Q27 Prove that ∑ 1 / n \sum1/n ∑ 1/ n where n is square free integers, diverges.
Proof:
The sum is actually: ∑ n = 1 ∞ ∣ μ ( n ) ∣ n > ∑ n = 1 ∞ μ ( n ) n = ζ ( 1 ) − 1 \sum_{n=1}^{\infin}\frac{|\mu(n)|}{n} > \sum_{n=1}^{\infin}\frac{\mu(n)}{n} =\zeta(1)^{-1} n = 1 ∑ ∞ n ∣ μ ( n ) ∣ > n = 1 ∑ ∞ n μ ( n ) = ζ ( 1 ) − 1
ζ ( 1 ) − 1 = ∏ p < n ( 1 + 1 / p ) \zeta(1)^{-1} = \prod_{p<n}(1+1/p) ζ ( 1 ) − 1 = p < n ∏ ( 1 + 1/ p )
Take log: log ∏ p < n ( 1 + 1 / p ) = ∑ p < n log ( 1 + 1 / p ) < ∑ p < n 1 / p \log{\prod_{p<n}(1+1/p)}=\sum_{p<n}\log{(1+1/p)} < \sum_{p<n}1/p log p < n ∏ ( 1 + 1/ p ) = p < n ∑ log ( 1 + 1/ p ) < p < n ∑ 1/ p So it diverge.