Proposition 1
Definition
If a,b,m∈Z and m=0, then we can say that a is congruent to b modulo m if m divides b−a. $a \equiv b (m) $
- a≡a(m)
- a≡b(m)⟹b≡a(m)
- a≡b(m),b≡c(m)⟹a≡c(m)
Proof:
- m∣(a−a)=0
- m∣(a−b)⟹m∣(b−a)
- m∣(b−a),m∣(c−b)⟹m∣(c−b+b−a)=c−a
That implies, congruence modulo is an equivalence relation on a set of integer.
Proposition 2
Definition
let aˉ as a set of integers that aˉ≡a(m). aˉ=a+km. aˉ is called a congruence class modulo m.
- aˉ=bˉ⟺a≡b(m)
- aˉ=bˉ⟺aˉ∩bˉ=∅
- There are m distinct congruence classes modulo m
Proof:
- If aˉ=bˉ, a∈aˉ=bˉ that is a≡b(m). If a≡b(m), a∈bˉ so aˉ⊂bˉ.
- If aˉ∩bˉ=∅, we shall have c≡a(m),c≡b(m). That is a≡b(m) so aˉ=bˉ.
- Suppose 0≤k<l<m and kˉ=lˉ. That implies k≡l(m)⟹m∣(l−k). But (l−m)<m, that is a contradiction. So for 0≤k<l<m, kˉ=lˉ. So there are m distinct congruence classes.
Proposition 3
Definition
If aˉ1,aˉ2,aˉ3...aˉm are a complete set of congruence classes modulo m, then {aˉ1,aˉ2,aˉ3...aˉm} is called a complete set of residues modulo m.
The set of congruence classes modulo m is Z/mZ.
This set can be made into a ring.
If a≡c(m),b≡d(m), then a+b≡c+d (m) also ab≡cd(m).
Proof:
By definition, m∣c−a,m∣d−b. m∣(c−a)+(d−b)=(c+d)−(a+b)⟹a+b≡c+d (m)
m∣c(d−b)+b(c−a)=cd−ab⟹ab≡cd (m)
Application
If p(x)∈Z[x], assume a≡b(m), we have p(a)≡p(b)(m). So when m=2, we have p(a)≡p(0)(2) or p(a)≡p(1)(2).
For p(x)=a0xn+a1xn−1...an−1x+an. p(0)=an and p(1)=a0+a1+...an.
If p(x)∈Z[x],p(0),p(1) are both odd, there are no integer roots.