Posted on

Table of Contents

Lemma 1

If a1,a2,...ala_1,a_2,...a_l are all relatively prime to m, then so is a1a2a3...ala_1a_2a_3...a_l.

Proof: aˉ1aˉ2aˉ3...aˉl=a1a2a3...al \bar a_1 \bar a_2 \bar a_3 ... \bar a_l = \overline{a_1a_2a_3...a_l} So (a1a2a3...al,m)=1(a_1a_2a_3...a_l,m)=1

Lemma 2

If a1,a2,a3,...ala_1,a_2,a_3,...a_l divides nn and (ai,aj)=1(a_i,a_j)=1. Then a1a2a3...ala_1a_2a_3...a_l divides nn.

Proof:

For l=1l=1, a1na_1|n.

Suppose that a1,a2,...al1a_1,a_2,...a_{l-1} divides nn and (ai,aj)=1(a_i,a_j)=1. Then a1a2...at1a_1a_2...a_{t-1} divides nn.

For ala_l relatively prime to all a1,a2,...al1a_1,a_2,...a_{l-1}. pal+qa1a2...al1=1 pa_l+qa_1a_2...a_{l-1}=1 Obviously left side divides n.

Chinese Remainder Theorem

Suppose m=m1m2m3...mtm=m_1m_2m_3...m_t and that (mi,mj)=1(m_i,m_j)=1.

Consider system: x=b1(m1),x=b2(m2),...,x=bt(mt) x=b_1(m_1),x=b_2(m_2),...,x=b_t(m_t) This system always has solutions and any two solutions differ by a multiple of m.

Proof:

Let ni=m/min_i=m/m_i, we already know (mi,ni)=1(m_i,n_i)=1. That is rimi+sini=1r_im_i+s_in_i=1.

So we have sini1(mi)s_in_i \equiv 1 (m_i) and then bisinibi(mi)b_is_in_i \equiv b_i (m_i).

That indicate x0=bisinix_0=\sum{b_is_in_i} is one of the solutions.

Suppose another solution x1x00(mi)x_1 - x_0 \equiv 0 (m_i), x1x_1 is another solution. We have all mi(x1x0)m_i|(x_1-x_0). So other solutions differ by mm.

Isomorphism

Define

For rings R1,R2,R3,...,RnR_1,R_2,R_3,...,R_n. Define the direct sum R1R2R3...Rn=S={r1,r2,r3,...rn}={ri}R_1\bigoplus R_2 \bigoplus R_3...\bigoplus R_n= S =\{r_1 ,r_2,r_3,...r_n\}=\{r_i\}. The addition is {ri}+{ri}=ri+ri\{r_i\}+\{r'_i\}={r_i+r'_i}. The multiplication is {ri}{ri}=riri\{r_i\}\cdot\{r'_i\}={r_ir'_i}. The zero is {0}\{0\} and identity is {1}\{1\}. For uSu\in S is a unit iff there is a vSv \in S such that uv=1uv=1. That is uivi=1{u_iv_i}={1}. Then we can consider a group of units U(Ri)\prod U(R_i)

Proposition 1

If S=R1R2R3...RnS = R_1\bigoplus R_2 \bigoplus R_3...\bigoplus R_n, then U(S)=U(R1)U(R2)...U(Rn)U(S)=U(R_1)U(R_2)...U(R_n).

Assume m1,m2,...,mtm_1,m_2,...,m_t are all relatively prime. ψi\psi_i is the homomorphism from Z\Z to Z/miZ\Z/m_i\Z. ψ(n)={ψ1(n),ψ2(n),...,ψt(n)} \psi(n) = \{\psi_1(n),\psi_2(n),...,\psi_t(n)\} By CRT, there always exist a n that ψi(n)=bˉi\psi_i(n)=\bar b_i which is nbi(mi)n \equiv b_i(m_i). So ψ\psi is onto.

So the kernel is ker(ψi)=miZker(\psi_i) = m_i\Z.

Therefore, we shown that ψ\psi allows isomorphism between Z/mZ\Z/m\Z and i=1tZ/miZ\bigoplus_{i=1}^{t}\Z/m_i\Z.

By definition, a unit in Z/mZ\Z/m\Z will be relatively prime with any mim_i. And let xix_i be the unit of Z/miZ\Z/m_i\Z we get x={x1,x2,...,xt}x = \{x_1,x_2,...,x_t\}. U(Z/mZ)U(Z/m1Z)×U(Z/m2Z)×U(Z/m3Z)...U(Z/mtZ) U(\Z/m\Z) \cong U(\Z/m_1\Z) \times U(\Z/m_2\Z) \times U(\Z/m_3\Z) ... U(\Z/m_t\Z) From the isomorphism, we can see the order of left side is ϕ(m)\phi(m) and the order of right side is ϕ(mi)\prod\phi(m_i).

Let m=ipiaim=\prod_i p_i^{a_i}, we have ϕ(m)=iϕ(piai)\phi(m)=\prod_i\phi(p_i^{a_i}).

Considering pap^a is relatively prime to any number except some multiple of pp, so there are pa1p^{a-1} number are multiple of pp. That is ϕ(pa)=papa1=pa(11/p)\phi(p^a)=p^a-p^{a-1} = p^a( 1- 1/p).

Therefore ϕ(m)=mi(11/pi) \phi(m) = m \prod_i (1-1/p_i) In the end, we have two isomorphism: Z/mZi=1tZ/piaiZ \Z/m\Z \cong \bigoplus_{i=1}^t \Z/p_i^{a_i}\Z

U(Z/mZ)i=1tU(Z/piaiZ) U(Z/m\Z) \cong \prod_{i=1}^t U(\Z/p_i^{a_i}\Z)